KeyLoop: Mechanical Retraction of the Abdominal Wall for Gasless Laparoscopy.

Journal Article (Journal Article)

Background. Despite favorable outcomes of laparoscopic surgery in high-income countries, its implementation in low- and middle-income countries (LMICs) is challenging given a shortage of consumable supplies, high cost, and risk of power outages. To overcome these barriers, we designed a mechanical retractor that provides vertical tension on the anterior abdominal wall. Methods. The retractor design is anatomically and mathematically optimized to provide exposure similar to traditional gas-based insufflation methods. Anatomical data from computed tomography scans were used to define retractor size. The retractor is constructed of biocompatible stainless steel rods and paired with a table-mounted lifting system to provide 5 degrees of freedom. Structural integrity was assessed through finite element analysis (FEA) and load testing. Functional testing was performed in a laparotomy model. Results. A user guide based on patient height and weight was created to customize retractor size, and 4 retractor sizes were constructed. FEA data using a 13.6 kg mass (15 mm Hg pneumoperitoneum) show a maximum of 30 mm displacement with no permanent deformation. Physical load testing with applied weight from 0 to 13.6 kg shows a maximum of 60 mm displacement, again without permanent deformation. Retraction achieved a 57% larger field of view compared to an unretracted state in a laparotomy model. Conclusions. The KeyLoop retractor maintains structural integrity, is easily sterilized, and can be readily manufactured, making it a viable alternative to traditional insufflation methods. For surgeons and patients in LMICs, the KeyLoop provides a means to increase access to laparoscopic surgery.

Full Text

Duke Authors

Cited Authors

  • Gupta, A; Brown, E; Davis, JT; Sekabira, J; Ramanujam, N; Mueller, J; Fitzgerald, TN

Published Date

  • February 2022

Published In

Volume / Issue

  • 29 / 1

Start / End Page

  • 88 - 97

PubMed ID

  • 34242531

Electronic International Standard Serial Number (EISSN)

  • 1553-3514

Digital Object Identifier (DOI)

  • 10.1177/15533506211031084


  • eng

Conference Location

  • United States