Double spectral attenuated inversion recovery (DSPAIR)-an efficient fat suppression technique for late gadolinium enhancement at 3 tesla.

Journal Article (Journal Article)

Despite clinical use of late gadolinium enhancement (LGE) for two decades, an efficient, robust fat suppression (FS) technique still does not exist for this CMR mainstay. In ischemic and non-ischemic heart disease, differentiating fibrotic tissue from infiltrating and adjacent fat is crucial. Multiple groups have independently developed an FS technique for LGE, double spectral attenuated inversion recovery (DSPAIR), but no comprehensive evaluation was performed. This study aims to fill this gap. DSPAIR uses two SPAIR pulses and one non-selective IR pulse to enable FS LGE, including compatibility with phase sensitive inversion recovery (PSIR). We implemented a magnitude (MAGN) and a PSIR variant and compared them with LGE without FS (CONTROL) and with spectral presaturation with inversion recovery (SPIR) in simulations, phantoms, and patients. Fat magnetization by SPIR, MAGN DSPAIR, and PSIR DSPAIR was simulated as a function of pulse B1 , readout (RO) pulse number, and fat TI . A phantom with fat, fibrosis, and myocardium compartments was imaged using all FS methods and modifying pulse B1 , RO pulse number, and heart rate. Signal was measured in SNR units. Fat, myocardium, and fibrosis SNR and fibrosis-to-fat CNR were obtained. Patient images were acquired with all FS techniques. Fat, myocardium, and fibrosis SNR, fibrosis-to-fat CNR, and image and FS quality were assessed. In the phantom, both DSPAIR variants provided superior FS compared with SPIR, independent of heart rate and RO pulse number. MAGN DSPAIR reduced fat signal by 99% compared with CONTROL, PSIR DSPAIR by 116%, and SPIR by 67% (25 RO pulses). In patients, both DSPAIR variants substantially reduced fat signal (MAGN DSPAIR by 87.1% ± 10.0%, PSIR DSPAIR by 130.5% ± 36.3%), but SPIR did not (35.8% ± 25.5%). FS quality was good to excellent for MAGN and PSIR DSPAIR, and moderate to poor for SPIR. DSPAIR provided highly effective FS across a wide range of parameters. PSIR DSPAIR performed best.

Full Text

Duke Authors

Cited Authors

  • Jenista, ER; Jensen, CJ; Wendell, D; Spatz, D; Darty, S; Kim, HW; Parker, M; Klem, I; Chen, E-L; Kim, RJ; Rehwald, WG

Published Date

  • October 2021

Published In

Volume / Issue

  • 34 / 10

Start / End Page

  • e4580 -

PubMed ID

  • 34251717

Electronic International Standard Serial Number (EISSN)

  • 1099-1492

Digital Object Identifier (DOI)

  • 10.1002/nbm.4580

Language

  • eng

Conference Location

  • England