MicroRNA-146a-5p Attenuates Fibrosis-related Molecules in Irradiated and TGF-beta1-Treated Human Hepatic Stellate Cells by Regulating PTPRA-SRC Signaling.

Journal Article (Journal Article)

MicroRNAs (miRNAs) have been shown to play a pivotal role in the pathogenesis and maintenance of liver fibrosis by altering expression of their downstream target genes. However, their role in radiation-induced liver fibrosis has not been assessed in detail. Here, we investigated the role of miR-146a-5p and the target gene in regulation of fibrosis-related markers in the human hepatic stellate cell line LX2. LX2 cells were stimulated with 8 Gy of X rays and various concentrations of TGF-β1 (0-5 ng/ml). Expression of α-SMA, collagen 1 and miR-146a-5p was evaluated. The MiR-146a-5p target gene predictions were performed using bioinformatics analysis and confirmed by dual-luciferase reporter experiment. The effect of miR-146a-5p and the involved target gene on the expression of these fibrogenic molecules was also assessed. Expression of α-SMA and collagen 1 were upregulated in response to radiation and/or TGF-β1 treatment and miR-146a-5p levels were altered in LX2 cells. Restoration of miR-146a-5p expression suppressed expression of α-SMA and collagen 1 in irradiated and TGF-β1-treated LX2 cells. Subsequent mechanism experiments revealed that miR-146a-5p overexpression inhibited PTPRA expression by binding to its 3'-untrans-lated region and reduced SRC activation. In addition, enhancement of PTPRA partially reversed the suppressive effect of miR-146a-5p on α-SMA and collagen 1 expression in LX2 cells. In conclusion, miR-146a-5p may negatively regulate the PTPRA-SRC signaling to inhibit expression of fibrosis-related markers in irradiated and TGF-β1-stimulated LX2 cells.

Full Text

Duke Authors

Cited Authors

  • Yuan, B-Y; Chen, Y-H; Wu, Z-F; Zhuang, Y; Chen, G-W; Zhang, L; Zhang, H-G; Cheng, JC-H; Lin, Q; Zeng, Z-C

Published Date

  • December 2019

Published In

Volume / Issue

  • 192 / 6

Start / End Page

  • 621 - 629

PubMed ID

  • 31560641

Electronic International Standard Serial Number (EISSN)

  • 1938-5404

Digital Object Identifier (DOI)

  • 10.1667/RR15401.1


  • eng

Conference Location

  • United States