Programmable Site-Specific Functionalization of DNA Origami with Polynucleotide Brushes.

Journal Article (Journal Article)

Combining surface-initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI-TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush-functionalized DNA nanostructures. We demonstrate that SI-TcEP can site-specifically pattern DONs with brushes containing both natural and non-natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse-grained simulations predict the conformation of the brush-functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush-functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site-specific growth of polynucleotide brushes. The ability to site-specifically decorate DONs with brushes of natural and non-natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.

Full Text

Duke Authors

Cited Authors

  • Yang, Y; Lu, Q; Huang, C-M; Qian, H; Zhang, Y; Deshpande, S; Arya, G; Ke, Y; Zauscher, S

Published Date

  • October 2021

Published In

Volume / Issue

  • 60 / 43

Start / End Page

  • 23241 - 23247

PubMed ID

  • 34302317

Pubmed Central ID

  • PMC8511278

Electronic International Standard Serial Number (EISSN)

  • 1521-3773

International Standard Serial Number (ISSN)

  • 1433-7851

Digital Object Identifier (DOI)

  • 10.1002/anie.202107829

Language

  • eng