Dune Dynamics Drive Discontinuous Barrier Retreat

Journal Article (Journal Article)

Barrier islands and spits tend to migrate landward in response to sea-level rise through the storm-driven process of overwash, but overwash flux depends on the height of the frontal dunes. Here, we explore this fundamental linkage between dune dynamics and barrier migration using the new model Barrier3D. Our experiments demonstrate that discontinuous barrier retreat is a prevalent behavior that can arise directly from the bistability of foredune height, occurring most likely when the storm return period and characteristic time scale of dune growth are of similar magnitudes. Under conditions of greater storm intensity, discontinuous retreat becomes the dominant behavior of barriers that were previously stable. Alternatively, higher rates of sea-level rise decrease the overall likelihood of discontinuous retreat in favor of continuous transgression. We find that internal dune dynamics, while previously neglected in exploratory barrier modeling, are an essential component of barrier evolution on time scales relevant to coastal management.

Full Text

Duke Authors

Cited Authors

  • Reeves, IRB; Moore, LJ; Murray, AB; Anarde, KA; Goldstein, EB

Published Date

  • July 16, 2021

Published In

Volume / Issue

  • 48 / 13

Electronic International Standard Serial Number (EISSN)

  • 1944-8007

International Standard Serial Number (ISSN)

  • 0094-8276

Digital Object Identifier (DOI)

  • 10.1029/2021GL092958

Citation Source

  • Scopus