Understanding the Mechanochemistry of Ladder-Type Cyclobutane Mechanophores by Single Molecule Force Spectroscopy.

Journal Article (Journal Article)

We have recently reported a series of ladder-type cyclobutane mechanophores, polymers of which can transform from nonconjugated structures to conjugated structures and change many properties at once. These multicyclic mechanophores, namely, exo -ladderane/ene, endo -benzoladderene, and exo -bicyclohexene-peri -naphthalene, have different ring structures fused to the first cyclobutane, significantly different free energy changes for ring-opening, and different stereochemistry. To better understand their mechanochemistry, we used single molecule force spectroscopy (SMFS) to characterize their force-extension behavior and measure the threshold forces. The threshold forces correlate with the activation energy of the first bond, but not with the strain of the fused rings distal to the polymer main chain, suggesting that the activation of these ladder-type mechanophores occurs with similar early transition states, which is supported by force-modified potential energy surface calculations. We further determined the stereochemistry of the mechanically generated dienes and observed significant and variable contour length elongation for these mechanophores both experimentally and computationally. The fundamental understanding of ladder-type mechanophores will facilitate future design of multicyclic mechanophores with amplified force-response and their applications as mechanically responsive materials.

Full Text

Duke Authors

Cited Authors

  • Horst, M; Yang, J; Meisner, J; Kouznetsova, TB; Martínez, TJ; Craig, SL; Xia, Y

Published Date

  • August 2021

Published In

Volume / Issue

  • 143 / 31

Start / End Page

  • 12328 - 12334

PubMed ID

  • 34310875

Electronic International Standard Serial Number (EISSN)

  • 1520-5126

International Standard Serial Number (ISSN)

  • 0002-7863

Digital Object Identifier (DOI)

  • 10.1021/jacs.1c05857


  • eng