Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins.

Journal Article (Journal Article)

Ratiometric genetically encoded calcium indicators (GECIs) record neural activity with high brightness while mitigating motion-induced artifacts. Recently developed ratiometric GECIs primarily employ cyan and yellow-fluorescent fluorescence resonance energy transfer pairs, and thus fall short in some applications that require deep tissue penetration and resistance to photobleaching. We engineered a set of green-red ratiometric calcium sensors that fused two fluorescent proteins and calcium sensing domain within an alternate configuration. The best performing elements of this palette of sensors, Twitch-GR and Twitch-NR, inherited the superior photophysical properties of their constituent fluorescent proteins. These properties enabled our sensors to outperform existing ratiometric calcium sensors in brightness and photobleaching metrics. In turn, the shot-noise limited signal fidelity of our sensors when reporting action potentials in cultured neurons and in the awake behaving mice was higher than the fidelity of existing sensors. Our sensor enabled a regime of imaging that simultaneously captured neural structure and function down to the deep layers of the mouse cortex.

Full Text

Duke Authors

Cited Authors

  • Zhang, D; Redington, E; Gong, Y

Published Date

  • July 2021

Published In

Volume / Issue

  • 4 / 1

Start / End Page

  • 924 -

PubMed ID

  • 34326458

Pubmed Central ID

  • PMC8322158

Electronic International Standard Serial Number (EISSN)

  • 2399-3642

International Standard Serial Number (ISSN)

  • 2399-3642

Digital Object Identifier (DOI)

  • 10.1038/s42003-021-02452-z

Language

  • eng