Phage-Resistant Bacteria Reveal a Role for Potassium in Root Colonization.

Journal Article (Journal Article)

Bacteriophage predation is an important factor in bacterial community dynamics and evolution. Phage-bacterium interaction has mainly been studied in lab cultures, while dynamics in natural habitats, and especially in the plant root niche, are underexplored. To better understand this process, we characterized infection of the soil bacterium Bacillus subtilis NCBI 3610 by the lytic phage SPO1 during growth in LB medium and compared it to root colonization. Resistance in vitro was primarily through modification of the phage receptor. However, this type of resistance reduced the ability to colonize the root. From a line that survived phage infection while retaining the ability to colonize the root, we identified a new phage resistance mechanism involving potassium (K+ ) ion influx modulation and enhanced biofilm formation. Furthermore, we show that potassium serves as a stimulator of root colonization among diverse growth-promoting bacilli species, with implications for plant health. IMPORTANCE Bacteriophage predation is an important factor in bacterial community dynamics and evolution. Phage-bacterium interaction has mainly been studied in lab cultures, while dynamics in natural habitats, and especially in the plant root niche, are underexplored. To better understand this process, we characterized infection of the soil bacterium Bacillus subtilis NCBI 3610 by the lytic phage SPO1 during growth in LB medium and compared it to root colonization. Resistance in vitro was primarily through modification of the phage receptor. However, this type of resistance reduced the ability to colonize the root. From a line that survived phage infection while retaining the ability to colonize the root, we identified a new phage resistance mechanism involving potassium (K+) ion influx modulation and enhanced biofilm formation. Furthermore, we show that potassium serves as a stimulator of root colonization among diverse growth-promoting bacilli species, with implications for plant health.

Full Text

Duke Authors

Cited Authors

  • Tzipilevich, E; Benfey, PN

Published Date

  • August 17, 2021

Published In

Volume / Issue

  • 12 / 4

Start / End Page

  • e0140321 -

PubMed ID

  • 34399609

Pubmed Central ID

  • PMC8406301

Electronic International Standard Serial Number (EISSN)

  • 2150-7511

International Standard Serial Number (ISSN)

  • 2150-7511

Digital Object Identifier (DOI)

  • 10.1128/mbio.01403-21

Language

  • eng