A Machine Learning Methodology for Identification and Triage of Heart Failure Exacerbations.

Journal Article (Journal Article)

Inadequate at-home management and self-awareness of heart failure (HF) exacerbations are known to be leading causes of the greater than 1 million estimated HF-related hospitalizations in the USA alone. Most current at-home HF management protocols include paper guidelines or exploratory health applications that lack rigor and validation at the level of the individual patient. We report on a novel triage methodology that uses machine learning predictions for real-time detection and assessment of exacerbations. Medical specialist opinions on statistically and clinically comprehensive, simulated patient cases were used to train and validate prediction algorithms. Model performance was assessed by comparison to physician panel consensus in a representative, out-of-sample validation set of 100 vignettes. Algorithm prediction accuracy and safety indicators surpassed all individual specialists in identifying consensus opinion on existence/severity of exacerbations and appropriate treatment response. The algorithms also scored the highest sensitivity, specificity, and PPV when assessing the need for emergency care. Here we develop a machine-learning approach for providing real-time decision support to adults diagnosed with congestive heart failure. The algorithm achieves higher exacerbation and triage classification performance than any individual physician when compared to physician consensus opinion.

Full Text

Duke Authors

Cited Authors

  • Morrill, J; Qirko, K; Kelly, J; Ambrosy, A; Toro, B; Smith, T; Wysham, N; Fudim, M; Swaminathan, S

Published Date

  • February 2022

Published In

Volume / Issue

  • 15 / 1

Start / End Page

  • 103 - 115

PubMed ID

  • 34453676

Pubmed Central ID

  • PMC8397870

Electronic International Standard Serial Number (EISSN)

  • 1937-5395

Digital Object Identifier (DOI)

  • 10.1007/s12265-021-10151-7


  • eng

Conference Location

  • United States