Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii.

Journal Article (Journal Article)

Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres.

Full Text

Duke Authors

Cited Authors

  • Schotanus, K; Yadav, V; Heitman, J

Published Date

  • August 2021

Published In

Volume / Issue

  • 17 / 8

Start / End Page

  • e1009743 -

PubMed ID

  • 34464380

Pubmed Central ID

  • PMC8407549

Electronic International Standard Serial Number (EISSN)

  • 1553-7404

Digital Object Identifier (DOI)

  • 10.1371/journal.pgen.1009743

Language

  • eng

Conference Location

  • United States