FLOP: Federated Learning on Medical Datasets using Partial Networks

Conference Paper

The outbreak of COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources. To aid and accelerate the diagnosis process, automatic diagnosis of COVID-19 via deep learning models has recently been explored by researchers across the world. While different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19, the data itself is still scarce due to patient privacy concerns. Federated Learning (FL) is a natural solution because it allows different organizations to cooperatively learn an effective deep learning model without sharing raw data. However, recent studies show that FL still lacks privacy protection and may cause data leakage. We investigate this challenging problem by proposing a simple yet effective algorithm, named Federated Learning on Medical Datasets using Partial Networks (FLOP), that shares only a partial model between the server and clients. Extensive experiments on benchmark data and real-world healthcare tasks show that our approach achieves comparable or better performance while reducing the privacy and security risks. Of particular interest, we conduct experiments on the COVID-19 dataset and find that our FLOP algorithm can allow different hospitals to collaboratively and effectively train a partially shared model without sharing local patients' data.

Full Text

Duke Authors

Cited Authors

  • Yang, Q; Zhang, J; Hao, W; Spell, GP; Carin, L

Published Date

  • August 14, 2021

Published In

  • Proceedings of the Acm Sigkdd International Conference on Knowledge Discovery and Data Mining

Start / End Page

  • 3845 - 3853

International Standard Book Number 13 (ISBN-13)

  • 9781450383325

Digital Object Identifier (DOI)

  • 10.1145/3447548.3467185

Citation Source

  • Scopus