Uniqueness of shear wave modeling in an incompressible, transversely isotropic (ITI) material.

Journal Article (Journal Article)

Five material parameters are required to describe a transversely isotropic (TI) material including two Poisson's ratios that characterize the compressibility of the material. Both Poisson's ratios must be specified to model an incompressible, TI (ITI) material. However, a previous analysis of the procedure used to evaluate the incompressible limit in a two-dimensional (2D) space of Poisson's ratios has shown that elements of the stiffness tensor are not unique in this limit, and that an additional, fourth parameter is required to model these elements for an ITI material. In this study, we extend this analysis to the case of shear wave propagation in an ITI material. Shear wave signals are modeled using analytic Green's tensor methods to express the signals in terms of the phase velocity and polarization vectors of the shear horizontal (SH) and shear vertical (SV) propagation modes. In contrast to the previous result, the current analysis demonstrates that the phase velocity and polarization vectors are independent of the procedure used to evaluate the 2D limit of Poisson's ratios without the need to include an additional parameter. Thus, calculated shear wave signals are unique and can be used for comparison with experimental measurements to determine all three model parameters that characterize an ITI material.

Full Text

Duke Authors

Cited Authors

  • Rouze, NC; Knight, AE; Nightingale, KR

Published Date

  • October 22, 2021

Published In

Volume / Issue

  • 66 / 21

PubMed ID

  • 34544067

Pubmed Central ID

  • PMC8605801

Electronic International Standard Serial Number (EISSN)

  • 1361-6560

International Standard Serial Number (ISSN)

  • 0031-9155

Digital Object Identifier (DOI)

  • 10.1088/1361-6560/ac287e


  • eng