Fault-tolerant control of an error-corrected qubit.
Journal Article (Journal Article)
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system1,2 . These extra degrees of freedom enable the detection and correction of errors, but also increase the control complexity of the encoded logical qubit. Fault-tolerant circuits contain the spread of errors while controlling the logical qubit, and are essential for realizing error suppression in practice3-6 . Although fault-tolerant design works in principle, it has not previously been demonstrated in an error-corrected physical system with native noise characteristics. Here we experimentally demonstrate fault-tolerant circuits for the preparation, measurement, rotation and stabilizer measurement of a Bacon-Shor logical qubit using 13 trapped ion qubits. When we compare these fault-tolerant protocols to non-fault-tolerant protocols, we see significant reductions in the error rates of the logical primitives in the presence of noise. The result of fault-tolerant design is an average state preparation and measurement error of 0.6 per cent and a Clifford gate error of 0.3 per cent after offline error correction. In addition, we prepare magic states with fidelities that exceed the distillation threshold7 , demonstrating all of the key single-qubit ingredients required for universal fault-tolerant control. These results demonstrate that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems. With improved two-qubit gates and the use of intermediate measurements, a stabilized logical qubit can be achieved.
Full Text
Duke Authors
Cited Authors
- Egan, L; Debroy, DM; Noel, C; Risinger, A; Zhu, D; Biswas, D; Newman, M; Li, M; Brown, KR; Cetina, M; Monroe, C
Published Date
- October 4, 2021
Published In
Volume / Issue
- 598 / 7880
Start / End Page
- 281 - 286
PubMed ID
- 34608286
Electronic International Standard Serial Number (EISSN)
- 1476-4687
International Standard Serial Number (ISSN)
- 0028-0836
Digital Object Identifier (DOI)
- 10.1038/s41586-021-03928-y
Language
- eng