Strengthened fault tolerance in byzantine fault tolerant replication

Conference Paper

Byzantine fault tolerant (BFT) state machine replication (SMR) is an important building block for constructing permissioned blockchain systems. In contrast to Nakamoto Consensus where any block obtains higher assurance as buried deeper in the blockchain, in BFT SMR, any committed block is secure has a fixed resilience threshold. In this paper, we investigate strengthened fault tolerance (SFT) in BFT SMR under partial synchrony, which provides stronger resilience guarantees during an optimistic period when the network is synchronous and the number of Byzantine faults is small. Moreover, the committed blocks can tolerate more than one-third (up to two-thirds) corruptions even after the optimistic period. Compared to the prior best solution FBFT which requires quadratic message complexity, our solution maintains the linear message complexity of state-of-the-art BFT SMR protocols and requires only marginal bookkeeping overhead. We implement our solution over the open-source Diem project, and give experimental results that demonstrate its efficiency under real-world scenarios.

Full Text

Duke Authors

Cited Authors

  • Xiang, Z; Malkhi, D; Nayak, K; Ren, L

Published Date

  • July 1, 2021

Published In

  • Proceedings International Conference on Distributed Computing Systems

Volume / Issue

  • 2021-July /

Start / End Page

  • 205 - 215

International Standard Book Number 13 (ISBN-13)

  • 9781665445139

Digital Object Identifier (DOI)

  • 10.1109/ICDCS51616.2021.00028

Citation Source

  • Scopus