Utilizing flip angle/TR equivalence to reduce breath hold duration in hyperpolarized 129 Xe 1-point Dixon gas exchange imaging.

Journal Article (Journal Article)

PURPOSE: To reduce scan duration in hyperpolarized 129 Xe 1-point Dixon gas exchange imaging by utilizing flip angle (FA)/TR equivalence. METHODS: Images were acquired in 12 subjects (n = 3 radiation therapy, n = 1 unexplained dyspnea, n = 8 healthy) using both standard (TR = 15 ms, FA = 20°, duration = 15 s, 998 projections) and "fast" (TR = 5.4 ms, FA = 12°, duration = 11.3 s, 2100 projections) acquisition parameters. For the fast acquisition, 3 image sets were reconstructed using subsets of 1900, 1500, and 1000 projections. From the resulting ventilation, tissue ("barrier"), and red blood cell (RBC) images, image metrics and biomarkers were compared to assess agreement between methods. RESULTS: Images acquired using both FA/TR settings had similar qualitative appearance. There were no significant differences in SNR, image mean, or image SD between images. Moreover, the percentage of the lungs in "defect", "normal", and "high" bins for each image (ventilation, RBC, barrier) was not significantly different among the acquisition types. After registration, comparison of 3D image metrics (Dice, volume similarity, average distance) agreed well between bins. Images using 1000 projections for reconstruction had no significant differences from images using all projections. CONCLUSION: Using flip angle/TR equivalence, hyperpolarized 129 Xe gas exchange images can be acquired via the 1-point Dixon technique in as little as 6 s, compared to ~15 s for previously reported parameter settings. The resulting images from this accelerated scan have no significant differences from the standard method in qualitative appearance or quantitative metrics.

Full Text

Duke Authors

Cited Authors

  • Niedbalski, PJ; Lu, J; Hall, CS; Castro, M; Mugler, JP; Shim, YM; Driehuys, B

Published Date

  • March 2022

Published In

Volume / Issue

  • 87 / 3

Start / End Page

  • 1490 - 1499

PubMed ID

  • 34644815

Pubmed Central ID

  • PMC8776583

Electronic International Standard Serial Number (EISSN)

  • 1522-2594

Digital Object Identifier (DOI)

  • 10.1002/mrm.29040


  • eng

Conference Location

  • United States