Skip to main content
Journal cover image

Graph auto-encoding brain networks with applications to analyzing large-scale brain imaging datasets.

Publication ,  Journal Article
Liu, M; Zhang, Z; Dunson, DB
Published in: NeuroImage
December 2021

There has been a huge interest in studying human brain connectomes inferred from different imaging modalities and exploring their relationships with human traits, such as cognition. Brain connectomes are usually represented as networks, with nodes corresponding to different regions of interest (ROIs) and edges to connection strengths between ROIs. Due to the high-dimensionality and non-Euclidean nature of networks, it is challenging to depict their population distribution and relate them to human traits. Current approaches focus on summarizing the network using either pre-specified topological features or principal components analysis (PCA). In this paper, building on recent advances in deep learning, we develop a nonlinear latent factor model to characterize the population distribution of brain graphs and infer their relationships to human traits. We refer to our method as Graph AuTo-Encoding (GATE). We applied GATE to two large-scale brain imaging datasets, the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP) for adults, to study the structural brain connectome and its relationship with cognition. Numerical results demonstrate huge advantages of GATE over competitors in terms of prediction accuracy, statistical inference, and computing efficiency. We found that the structural connectome has a stronger association with a wide range of human cognitive traits than was apparent using previous approaches.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

NeuroImage

DOI

EISSN

1095-9572

ISSN

1053-8119

Publication Date

December 2021

Volume

245

Start / End Page

118750

Related Subject Headings

  • Young Adult
  • Reading
  • Phenotype
  • Nonlinear Dynamics
  • Neurology & Neurosurgery
  • Models, Neurological
  • Male
  • Magnetic Resonance Imaging
  • Imaging, Three-Dimensional
  • Humans
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Liu, M., Zhang, Z., & Dunson, D. B. (2021). Graph auto-encoding brain networks with applications to analyzing large-scale brain imaging datasets. NeuroImage, 245, 118750. https://doi.org/10.1016/j.neuroimage.2021.118750
Liu, Meimei, Zhengwu Zhang, and David B. Dunson. “Graph auto-encoding brain networks with applications to analyzing large-scale brain imaging datasets.NeuroImage 245 (December 2021): 118750. https://doi.org/10.1016/j.neuroimage.2021.118750.
Liu, Meimei, et al. “Graph auto-encoding brain networks with applications to analyzing large-scale brain imaging datasets.NeuroImage, vol. 245, Dec. 2021, p. 118750. Epmc, doi:10.1016/j.neuroimage.2021.118750.
Journal cover image

Published In

NeuroImage

DOI

EISSN

1095-9572

ISSN

1053-8119

Publication Date

December 2021

Volume

245

Start / End Page

118750

Related Subject Headings

  • Young Adult
  • Reading
  • Phenotype
  • Nonlinear Dynamics
  • Neurology & Neurosurgery
  • Models, Neurological
  • Male
  • Magnetic Resonance Imaging
  • Imaging, Three-Dimensional
  • Humans