Triplet harvesting in luminescent Cu(i) complexes by the thermally activated luminescence transition mechanism: Impact of the molecular structure

Journal Article (Journal Article)

Thermally induced transition from ordinary phosphorescence to delayed fluorescence in two kinds of luminescent copper(i) complexes is comprehensively investigated by using variable-temperature time-integrated and time-resolved photoluminescence measurements as well as model analysis. A pronounced impact of the molecular structure on exciton transfer from the lowest excited triplet spin states to the singlet spin states with higher energy is firmly demonstrated. Moreover, several fundamental photophysical processes including triplet localization, triplet harvesting, and reverse intersystem crossing are explored using theoretical models. Temperature dependence abnormalities of the emission intensity are quantitatively interpreted. Raman spectral characterization and theoretical calculations of vibronic emission transitions reveal that the molecules' thermal vibrations play an essential role in the fluorescence process.

Full Text

Duke Authors

Cited Authors

  • Su, ZC; Zheng, CC; Cheng, G; Che, CM; Xu, SJ

Published Date

  • January 1, 2017

Published In

Volume / Issue

  • 5 / 18

Start / End Page

  • 4488 - 4494

Electronic International Standard Serial Number (EISSN)

  • 2050-7526

International Standard Serial Number (ISSN)

  • 2050-7534

Digital Object Identifier (DOI)

  • 10.1039/c7tc00773f

Citation Source

  • Scopus