Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management.

Journal Article (Journal Article)

Personal thermal management textile/wearable is an effective strategy to expand the indoor temperature setpoint range to reduce a building’s energy consumption. Usually, textiles/wearables that were engineered for controlling conduction, convection, radiation, or sweat evaporation have been developed separately. Here, we demonstrate a multimodal adaptive wearable with moisture-responsive flaps composed of a nylon/metal heterostructure, which can simultaneously regulate convection, sweat evaporation, and mid-infrared emission to accomplish large and rapid heat transfer tuning in response to human perspiration vapor. We show that the metal layer not only plays a crucial role in low-emissivity radiative heating but also enhances the bimorph actuation performance. The multimodal adaptive mechanism expands the thermal comfort zone by 30.7 and 20.7% more than traditional static textiles and single-modal adaptive wearables without any electricity and energy input, making it a promising design paradigm for personal heat management.

Full Text

Duke Authors

Cited Authors

  • Li, X; Ma, B; Dai, J; Sui, C; Pande, D; Smith, DR; Brinson, LC; Hsu, P-C

Published Date

  • December 15, 2021

Published In

Volume / Issue

  • 7 / 51

Start / End Page

  • eabj7906 -

PubMed ID

  • 34910511

Pubmed Central ID

  • PMC8673776

Electronic International Standard Serial Number (EISSN)

  • 2375-2548

International Standard Serial Number (ISSN)

  • 2375-2548

Digital Object Identifier (DOI)

  • 10.1126/sciadv.abj7906


  • eng