[18 F]Fluoro-DCP, a first generation PET radiotracer for monitoring protein sulfenylation in vivo.

Journal Article (Journal Article)

Redox metabolism plays essential functions in the pathology of cancer and many other diseases. While several radiotracers for imaging redox metabolism have been developed, there are no reports of radiotracers for in vivo imaging of protein oxidation. Here we take the first step towards this goal and describe the synthesis and kinetic properties of a new positron emission tomography (PET) [18 F]Fluoro-DCP radiotracer for in vivo imaging of protein sulfenylation. Time course biodistribution and PET/CT studies using xenograft animal models of Head and Neck Squamous Cell Cancer (HNSCC) demonstrate its capability to distinguish between tumors with radiation sensitive and resistant phenotypes consistent with previous reports of decreased protein sulfenylation in clinical specimens of radiation resistant HNSCC. We envision further development of this technology to aid research efforts towards improving diagnosis of patients with radiation resistant tumors.

Full Text

Duke Authors

Cited Authors

  • Solingapuram Sai, KK; Chen, X; Li, Z; Zhu, C; Shukla, K; Forshaw, TE; Wu, H; Vance, SA; Pathirannahel, BL; Madonna, M; Dewhirst, MW; Tsang, AW; Poole, LB; Ramanujam, N; King, SB; Furdui, CM

Published Date

  • February 2022

Published In

Volume / Issue

  • 49 /

Start / End Page

  • 102218 -

PubMed ID

  • 34952463

Pubmed Central ID

  • PMC8715125

Electronic International Standard Serial Number (EISSN)

  • 2213-2317

International Standard Serial Number (ISSN)

  • 2213-2317

Digital Object Identifier (DOI)

  • 10.1016/j.redox.2021.102218


  • eng