Dynamic Learning and Market Making in Spread Betting Markets with Informed Bettors

Journal Article (Journal Article)

We study the profit-maximization problem of a market maker in a spread betting market. In this market, the market maker quotes cutoff lines for the outcome of a certain future event as "prices,"and bettors bet on whether the event outcome exceeds the cutoff lines. Anonymous bettors with heterogeneous strategic behavior and information levels participate in the market. The market maker has limited information on the event outcome distribution, aiming to extract information from the market (i.e., "learning") while guarding against an informed bettor's strategic manipulation (i.e., "bluff-proofing"). We show that Bayesian policies that ignore bluffing are typically vulnerable to the informed bettor's strategic manipulation, resulting in exceedingly large profit losses for the market maker as well as market inefficiency. We develop and analyze a novel family of policies, called inertial policies, that balance the trade-off between learning and bluff-proofing. We construct a simple instance of this family that (i) enables the market maker to achieve a near-optimal profit loss and (ii) eventually yields market efficiency.

Full Text

Duke Authors

Cited Authors

  • Birge, JR; Feng, Y; Keskin, NB; Schultz, A

Published Date

  • November 1, 2021

Published In

Volume / Issue

  • 69 / 6

Start / End Page

  • 1746 - 1766

Electronic International Standard Serial Number (EISSN)

  • 1526-5463

International Standard Serial Number (ISSN)

  • 0030-364X

Digital Object Identifier (DOI)

  • 10.1287/opre.2021.2109

Citation Source

  • Scopus