Skip to main content
Journal cover image

Modifying LI-RADS on Gadoxetate Disodium-Enhanced MRI: A Secondary Analysis of a Prospective Observational Study.

Publication ,  Journal Article
Jiang, H; Song, B; Qin, Y; Konanur, M; Wu, Y; McInnes, MDF; Lafata, KJ; Bashir, MR
Published in: J Magn Reson Imaging
August 2022

BACKGROUND: The Liver Imaging Reporting and Data System (LI-RADS) is widely used for diagnosing hepatocellular carcinoma (HCC), however, with unsatisfactory sensitivity, complex ancillary features, and inadequate integration with gadoxetate disodium (EOB)-enhanced MRI. PURPOSE: To modify LI-RADS (mLI-RADS) on EOB-MRI. STUDY TYPE: Secondary analysis of a prospective observational study. POPULATION: Between July 2015 and September 2018, 224 consecutive high-risk patients (median age, 51 years; range, 26-83; 180 men; training/testing sets: 169/55 patients) with 742 (median size, 13 mm; interquartile range, 7-27; 498 HCCs) LR-3/4/5 observations. FIELD STRENGTH/SEQUENCE: 3.0 T T2 -weighted fast spin-echo, diffusion-weighted spin-echo based echo-planar, and 3D T1 -weighted gradient echo sequences. ASSESSMENT: Three radiologists (with 5, 5, and 10 years of experience in liver MR imaging, respectively) blinded to the reference standard (histopathology or imaging follow-up) reviewed all MR images independently. In the training set, the optimal LI-RADS version 2018 (v2018) features selected by Random Forest analysis were used to develop mLI-RADS via decision tree analysis. STATISTICAL TESTS: In an independent testing set, diagnostic performances of mLI-RADS, LI-RADS v2018, and the Korean Liver Cancer Association (KLCA) guidelines were computed using a generalized estimating equation model and compared with McNemar's test. A two-tailed P < 0.05 was statistically significant. RESULTS: Five features (nonperipheral "washout," restricted diffusion, nonrim arterial phase hyperenhancement [APHE], mild-moderate T2 hyperintensity, and transitional phase hypointensity) constituted mLI-RADS, and mLR-5 was nonperipheral washout coupled with either nonrim APHE or restricted diffusion. In the testing set, mLI-RADS was significantly more sensitive (72%) and accurate (80%) than LI-RADS v2018 (sensitivity, 61%; accuracy 74%; both P < 0.001) and the KLCA guidelines (sensitivity, 64%; accuracy 74%; both P < 0.001), without sacrificing positive predictive value (mLI-RADS, 94%; LI-RADS v2018, 94%; KLCA guidelines, 92%). DATA CONCLUSION: In high-risk patients, the EOB-MRI-based mLI-RADS was simpler and more sensitive for HCC than LI-RADS v2018 while maintaining high positive predictive value. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

Duke Scholars

Published In

J Magn Reson Imaging

DOI

EISSN

1522-2586

Publication Date

August 2022

Volume

56

Issue

2

Start / End Page

399 / 412

Location

United States

Related Subject Headings

  • Sensitivity and Specificity
  • Retrospective Studies
  • Nuclear Medicine & Medical Imaging
  • Middle Aged
  • Male
  • Magnetic Resonance Imaging
  • Liver Neoplasms
  • Humans
  • Gadolinium DTPA
  • Contrast Media
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Jiang, H., Song, B., Qin, Y., Konanur, M., Wu, Y., McInnes, M. D. F., … Bashir, M. R. (2022). Modifying LI-RADS on Gadoxetate Disodium-Enhanced MRI: A Secondary Analysis of a Prospective Observational Study. J Magn Reson Imaging, 56(2), 399–412. https://doi.org/10.1002/jmri.28056
Jiang, Hanyu, Bin Song, Yun Qin, Meghana Konanur, Yuanan Wu, Matthew D. F. McInnes, Kyle J. Lafata, and Mustafa R. Bashir. “Modifying LI-RADS on Gadoxetate Disodium-Enhanced MRI: A Secondary Analysis of a Prospective Observational Study.J Magn Reson Imaging 56, no. 2 (August 2022): 399–412. https://doi.org/10.1002/jmri.28056.
Jiang H, Song B, Qin Y, Konanur M, Wu Y, McInnes MDF, et al. Modifying LI-RADS on Gadoxetate Disodium-Enhanced MRI: A Secondary Analysis of a Prospective Observational Study. J Magn Reson Imaging. 2022 Aug;56(2):399–412.
Jiang, Hanyu, et al. “Modifying LI-RADS on Gadoxetate Disodium-Enhanced MRI: A Secondary Analysis of a Prospective Observational Study.J Magn Reson Imaging, vol. 56, no. 2, Aug. 2022, pp. 399–412. Pubmed, doi:10.1002/jmri.28056.
Jiang H, Song B, Qin Y, Konanur M, Wu Y, McInnes MDF, Lafata KJ, Bashir MR. Modifying LI-RADS on Gadoxetate Disodium-Enhanced MRI: A Secondary Analysis of a Prospective Observational Study. J Magn Reson Imaging. 2022 Aug;56(2):399–412.
Journal cover image

Published In

J Magn Reson Imaging

DOI

EISSN

1522-2586

Publication Date

August 2022

Volume

56

Issue

2

Start / End Page

399 / 412

Location

United States

Related Subject Headings

  • Sensitivity and Specificity
  • Retrospective Studies
  • Nuclear Medicine & Medical Imaging
  • Middle Aged
  • Male
  • Magnetic Resonance Imaging
  • Liver Neoplasms
  • Humans
  • Gadolinium DTPA
  • Contrast Media