Assessment of image-derived risk factors for natural course of unruptured cerebral aneurysms.

Journal Article (Journal Article)

OBJECTIVE: The goal of this prospective longitudinal study was to test whether image-derived metrics can differentiate unruptured aneurysms that will become unstable (grow and/or rupture) from those that will remain stable. METHODS: One hundred seventy-eight patients harboring 198 unruptured cerebral aneurysms for whom clinical observation and follow-up with imaging surveillance was recommended at 4 clinical centers were prospectively recruited into this study. Imaging data (predominantly CT angiography) at initial presentation was recorded. Computational geometry was used to estimate numerous metrics of aneurysm morphology that described the size and shape of the aneurysm. The nonlinear, finite element method was used to estimate uniform pressure-induced peak wall tension. Computational fluid dynamics was used to estimate blood flow metrics. The median follow-up period was 645 days. Longitudinal outcome data on these aneurysm patients-whether their aneurysms grew or ruptured (the unstable group) or remained unchanged (the stable group)-was documented based on follow-up at 4 years after the beginning of recruitment. RESULTS: Twenty aneurysms (10.1%) grew, but none ruptured. One hundred forty-nine aneurysms (75.3%) remained stable and 29 (14.6%) were lost to follow-up. None of the metrics-including aneurysm size, nonsphericity index, peak wall tension, and low shear stress area-differentiated the stable from unstable groups with statistical significance. CONCLUSIONS: The findings in this highly selected group do not support the hypothesis that image-derived metrics can predict aneurysm growth in patients who have been selected for observation and imaging surveillance. If aneurysm shape is a significant determinant of invasive versus expectant management, selection bias is a key limitation of this study.

Full Text

Duke Authors

Cited Authors

  • Ramachandran, M; Retarekar, R; Raghavan, ML; Berkowitz, B; Dickerhoff, B; Correa, T; Lin, S; Johnson, K; Hasan, D; Ogilvy, C; Rosenwasser, R; Torner, J; Bogason, E; Stapleton, CJ; Harbaugh, RE

Published Date

  • February 2016

Published In

Volume / Issue

  • 124 / 2

Start / End Page

  • 288 - 295

PubMed ID

  • 26381246

Electronic International Standard Serial Number (EISSN)

  • 1933-0693

Digital Object Identifier (DOI)

  • 10.3171/2015.2.JNS142265


  • eng

Conference Location

  • United States