Utility of Diffusive Gradient in Thin-Film Passive Samplers for Predicting Mercury Methylation Potential and Bioaccumulation in Freshwater Wetlands.

Journal Article (Journal Article)

Mercury is a risk in aquatic ecosystems when the metal is converted to methylmercury (MeHg) and subsequently bioaccumulates in aquatic food webs. This risk can be difficult to manage because of the complexity of biogeochemical processes for mercury and the need for accessible techniques to navigate this complexity. Here, we explored the use of diffusive gradient in thin-film (DGT) passive samplers as a tool to simultaneously quantify the methylation potential of inorganic Hg (IHg) and the bioaccumulation potential of MeHg in freshwater wetlands. Outdoor freshwater wetland mesocosms were amended with four isotopically labeled and geochemically relevant IHg forms that represent a range of methylation potentials (202 Hg2+ , 201 Hg-humic acid, 199 Hg-sorbed to FeS, and 200 HgS nanoparticles). Six weeks after the spikes, we deployed DGT samplers in the mesocosm water and sediments, evaluated DGT-uptake rates of total Hg, MeHg, and IHg (calculated by difference) for the Hg isotope spikes, and examined correlations with total Hg, MeHg, and IHg concentrations in sediment, water, and micro and macrofauna in the ecosystem. In the sediments, we observed greater relative MeHg concentrations from the initially dissolved IHg isotope spikes and lower MeHg levels from the initially particulate IHg spikes. These trends were consistent with uptake flux of IHg into DGTs deployed in surface sediments. Moreover, we observed correlations between total Hg-DGT uptake flux and MeHg levels in periphyton biofilms, submergent plant stems, snails, and mosquitofish in the ecosystem. These correlations were better for DGTs deployed in the water column compared to DGTs in the sediments, suggesting the importance of vertical distribution of bioavailable MeHg in relation to food sources for macrofauna. Overall, these results demonstrate that DGT passive samplers are a relatively simple and efficient tool for predicting IHg methylation and MeHg bioaccumulation potentials without the need to explicitly delineate IHg and MeHg speciation and partitioning in complex ecosystems.

Full Text

Duke Authors

Cited Authors

  • Neal-Walthall, N; Ndu, U; Rivera, NA; Elias, DA; Hsu-Kim, H

Published Date

  • February 2022

Published In

Volume / Issue

  • 56 / 3

Start / End Page

  • 1743 - 1752

PubMed ID

  • 35044747

Pubmed Central ID

  • PMC9630924

Electronic International Standard Serial Number (EISSN)

  • 1520-5851

International Standard Serial Number (ISSN)

  • 0013-936X

Digital Object Identifier (DOI)

  • 10.1021/acs.est.1c06796

Language

  • eng