B Cell Subsets Differentially Contribute to the T Cell-Independent Memory Pool.

Journal Article (Journal Article)

The roles distinct B cell subsets play in clonal expansion, isotype switching, and memory B cell differentiation in response to T cell-independent type 2 Ags (TI-2 Ags) has been understudied. Using sorted B cells from VH B1-8 knock-in mice, we evaluated B-1b, marginal zone, and follicular B cell responses to the TI-2 Ag, NP-Ficoll. All subsets extensively divided in response to NP-Ficoll. Nonetheless, B-1b cells exhibited significantly increased IgG switching and differentiation into Ab-secreting cells (ASC)-a finding that coincided with increased AgR signaling capacity and Blimp1 expression by B-1b cells. All subsets formed memory cells and expressed markers previously identified for T cell-dependent memory B cells, including CD80, PDL2, and CD73, although B-1b cells generated the greatest number of memory cells with higher frequencies of IgG- and CD80-expressing cells. Despite memory formation, secondary immunization 4 wk after primary immunization did not increase NP-specific IgG. However, boosting occurred in B-1b cell-recipient mice when IgG levels declined. CD80+ memory B-1b cells divided, class switched, and differentiated into ASC in response to Ag in vivo, but this was inhibited in the presence of NP-specific IgG. Furthermore, CD80 blockade significantly increased memory B-1b cell division and differentiation to ASC upon Ag restimulation. Collectively, these findings demonstrate B-1b, marginal zone B, and follicular B subsets significantly contribute to the TI-2 Ag-specific memory B cell pool. In particular, we show B-1b cells generate a functional CD80-regulated memory population that can be stimulated to divide and differentiate into ASC upon Ag re-encounter when Ag-specific IgG levels decline.

Full Text

Duke Authors

Cited Authors

  • Daly, CA; Spurrier, MA; Jennings-Gee, JE; Haas, KM

Published Date

  • November 2020

Published In

Volume / Issue

  • 205 / 9

Start / End Page

  • 2362 - 2374

PubMed ID

  • 32978280

Pubmed Central ID

  • PMC7578113

Electronic International Standard Serial Number (EISSN)

  • 1550-6606

International Standard Serial Number (ISSN)

  • 0022-1767

Digital Object Identifier (DOI)

  • 10.4049/jimmunol.1901453

Language

  • eng