Gestational exposure to chlorpyrifos: dose response profiles for cholinesterase and carboxylesterase activity.

Journal Article (Journal Article)

This study investigates the in vivo dose response profiles of the target enzyme cholinesterase (ChE) and the detoxifying enzymes carboxylesterase (CaE) in the fetal and maternal compartments of pregnant rats dosed with chlorpyrifos [(O,O'-diethyl O-3,5,6-trichloro-2-pyridyl) phosphorothionate], a commonly used organophosphorus insecticide. Pregnant rats were dosed daily (po) with chlorpyrifos in corn oil (0, 3, 5, 7, or 10 mg/kg) on gestational days (GD) 14-18. Animals were sacrificed 5 h after the last chlorpyrifos dose (time of maximum brain cholinesterase inhibition) for analysis of ChE and CaE activity in maternal blood, liver, brain, placenta, and fetal liver and brain. The in vitro sensitivity (i.e., IC50, 30 min, 26 degrees C) of CaE also was determined by assaying the activity remaining after incubation with a range of chlorpyrifos-oxon concentrations. In vivo exposure to 10 mg/kg chlorpyrifos from GD14-18 caused overt maternal toxicity, with dose-related decreases in ChE activity more notable in maternal brain than fetal brain. Dose-related effects were also seen with chlorpyrifos-induced inhibition of fetal liver ChE and maternal brain CaE activities. Gestational exposure caused no inhibition of placental ChE or CaE, fetal brain CaE, or maternal blood CaE. ChE activities in the maternal blood and liver, as well as fetal and maternal liver CaE, however, were maximally inhibited by even the lowest dosage of chlorpyrifos. The in vitro sensitivity profiles of CaE to chlorpyrifos-oxon inhibition were valuable in predicting and verifying the in vivo CaE response profiles. Both the in vivo and in vitro findings indicated that fetal liver CaE inhibition was an extremely sensitive indicator of fetal chlorpyrifos exposure.

Full Text

Duke Authors

Cited Authors

  • Lassiter, TL; Barone, S; Moser, VC; Padilla, S

Published Date

  • November 1999

Published In

Volume / Issue

  • 52 / 1

Start / End Page

  • 92 - 100

PubMed ID

  • 10568702

Electronic International Standard Serial Number (EISSN)

  • 1096-0929

International Standard Serial Number (ISSN)

  • 1096-6080

Digital Object Identifier (DOI)

  • 10.1093/toxsci/52.1.92


  • eng