Effects of physical activity intensity on adulthood obesity as a function of long-term exposure to ambient PM2.5 : Observations from a Chinese nationwide representative sample.

Journal Article (Journal Article)

Long-term exposure to PM2.5 has been associated with increased obesity risk, while physical activity (PA) is a suggested protective factor. This raises a dilemma whether the increased dose of PM2.5 due to PA-intensified ventilation would offset the benefits of PA. Using a national representative sample, we aim to (1) ascertain inclusive findings of the association between PA and obesity, and (2) examine whether PM2.5 exposure modifies the PA-obesity relationship. We recruited 91,121 Chinese adults from 31 provinces using a multi-stage stratified-clustering random sampling method. PM2.5 was estimated using a validated machine learning method with a spatial resolution of 0.1° × 0.1°. PA intensity was calculated as metabolic equivalent (MET)-hour/week by summing all activities. Body weight, height, and waist circumference (WC) were measured after overnight fasting. Obesity-related traits included continuous outcomes (Body mass index [BMI], WC, and waist-to-height ratio (WHtR)) and binomial outcomes (general obesity, abdominal obesity, and WHtR obesity). Generalized linear regression models were used to estimate the interaction effects between PM2.5 and PA on obesity, controlling for covariates. The results indicated that each IQR increase in PA was associated with 0.078 (95% CI: -0.096 to -0.061) kg/m2 , 0.342 (-0.389 to -0.294) cm, and 0.0022 (-0.0025 to -0.0019) decrease in BMI, WC, and WHtR, respectively. The joint association showed that benefits of PA on obesity were attenuated as PM2.5 increased. Risk of abdominal obesity decreased 11.3% (OR = 0.887, 95% CI: 0.866, 0.908) per IQR increase in PA among the low-PM2.5 (≤55.9 μg/m3 ) exposure group, but only 5.5% (OR = 0.945, 95% CI: 0.930, 0.960) among the high-PM2.5 (>55.9 μg/m3 ) exposure group. We concluded the increase in PA intensity was significantly associated with lower risk of obesity in adults living across mainland China, where annual level of PM2.5 were mostly exceeding the standard. Reducing PM2.5 exposure would enhance the PA benefits as a risk reduction strategy.

Full Text

Duke Authors

Cited Authors

  • Guo, Q; Xue, T; Wang, B; Cao, S; Wang, L; Zhang, JJ; Duan, X

Published Date

  • June 2022

Published In

Volume / Issue

  • 823 /

Start / End Page

  • 153417 -

PubMed ID

  • 35093342

Electronic International Standard Serial Number (EISSN)

  • 1879-1026

International Standard Serial Number (ISSN)

  • 0048-9697

Digital Object Identifier (DOI)

  • 10.1016/j.scitotenv.2022.153417

Language

  • eng