Effect of three years' seasonal malaria chemoprevention on molecular markers of resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine and amodiaquine in Ouelessebougou, Mali.

Journal Article (Journal Article)

BACKGROUND: In 2012, seasonal malaria chemoprevention (SMC) was recommended as policy for malaria control by the World Health Organization (WHO) in areas of highly seasonal malaria transmission across the Sahel sub-region in Africa along with monitoring of drug resistance. We assessed the long-term impact of SMC on Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) over a 3-year period of SMC implementation in the health district of Ouelessebougou, Mali. METHODS: In 8 randomly selected sub-districts of Ouelessebougou, Mali, children aged 0-5 years were randomly selected during cross-sectional surveys at baseline (August 2014) and 1, 2 and 3 years post-SMC, at the beginning and end of the malaria transmission season. Blood smears and blood spots on filter paper were obtained and frequencies of mutation in P. falciparum genes related to resistance to SP and AQ (Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt) were assessed by PCR amplification on individual samples and PCR amplification followed by deep sequencing on pooled (by site and year) samples. RESULTS: At each survey, approximately 50-100 individual samples were analysed by PCR amplification and a total of 1,164 samples were analysed by deep sequencing with an average read depth of 18,018-36,918 after pooling by site and year. Most molecular markers of resistance did not increase in frequency over the period of study (2014-2016). After 3 years of SMC, the frequencies of Pfdhps 540E, Pfdhps 437G and Pfcrt K76T remained similar compared to baseline (4.0 vs 1.4%, p = 0.41; 74.5 vs 64.6%, p = 0.22; 71.3 vs 67.4%, p = 0.69). Nearly all samples tested carried Pfdhfr 59R, and this proportion remained similar 3 years after SMC implementation (98.8 vs 100%, p = 1). The frequency of Pfmdr1 N86Y increased significantly over time from 5.6% at baseline to 18.6% after 3 years of SMC (p = 0.016). Results of pooled analysis using deep sequencing were consistent with those by individual analysis with standard PCR, but also indicated for the first time the presence of mutations at the Pfdhps A581G allele at a frequency of 11.7% after 2 years of SMC, as well as the Pfdhps I431V allele at frequencies of 1.6-9.3% following 1 and 2 years of SMC, respectively. CONCLUSION: Two and 3 years of SMC implementation were associated with increased frequency of the Pfmdr1 N86Y mutation but not Pfdhps 540E, Pfdhps 437G and Pfcrt K76T. The first-time detection of the Pfdhps haplotype bearing the I431V and A581G mutations in Mali, even at low frequency, warrants further long-term surveillance.

Full Text

Duke Authors

Cited Authors

  • Mahamar, A; Sumner, KM; Levitt, B; Freedman, B; Traore, A; Barry, A; Issiaka, D; Dembele, AB; Kanoute, MB; Attaher, O; Diarra, BN; Sagara, I; Djimde, A; Duffy, PE; Fried, M; Taylor, SM; Dicko, A

Published Date

  • February 8, 2022

Published In

Volume / Issue

  • 21 / 1

Start / End Page

  • 39 -

PubMed ID

  • 35135546

Pubmed Central ID

  • PMC8822718

Electronic International Standard Serial Number (EISSN)

  • 1475-2875

Digital Object Identifier (DOI)

  • 10.1186/s12936-022-04059-z

Language

  • eng

Conference Location

  • England