Sex-specific effects of adolescent intermittent ethanol exposure-induced dysregulation of hippocampal glial cells in adulthood.

Journal Article (Journal Article)

Adolescent alcohol abuse is a significant public health concern, with approximately 4.3 million U.S. adolescents reporting monthly binge drinking. Excessive ethanol consumption during adolescence has been linked to dysregulation of the neuroimmune system, particularly in the hippocampus. Because there are sex differences in both neuroimmune responses and ethanol's pharmacologic actions, this study tested whether there were disparate effects based on sex in glial cells and neurodegeneration in adulthood after the adolescent intermittent ethanol (AIE) model. Male and female adolescent Sprague-Dawley rats underwent AIE. In adulthood, immunohistochemical techniques were utilized to determine the effects of AIE on astrocytes and microglia, and Fluoro-Jade C (FJC) was used to assess neurodegeneration in the hippocampus. AIE exposure significantly increased astrocyte activation in the cornu ammonis 1 (CA1), CA2/3, and dentate gyrus (DG) in both male and female rats with no discernible sex differences in immunoreactivity. Likewise, the number of GFAP + cells was significantly increased by AIE across the hippocampus. In our microglial assessment, AIE only led to increased Iba1 immunoreactivity in the CA1 but not CA2/3 or DG regions. However, the number of Iba1+ cells was increased by AIE in both the CA1 and DG subregions. In the DG, the ethanol effect was observed in both sexes, but in the CA1, AIE-induced increased Iba1 cells were only observed in females. In regard to neurodegeneration, there were no persisting AIE effects on FJC + cells. These findings indicate that AIE alters hippocampal glial cells in adulthood, in the absence of active neurodegeneration. However, while AIE induced long-term elevation of astroglial measures in both males and females, persisting AIE-induced microglial activation was more sparse and sex-dependent. While the majority of these findings suggest that AIE has similar effects on glial morphology and number between males and females, additional work should determine whether there are molecular differences as well as innate sex differences in glial interaction with AIE's influence on glial functions in behavior.

Full Text

Duke Authors

Cited Authors

  • Nwachukwu, KN; King, DM; Healey, KL; Swartzwelder, HS; Marshall, SA

Published Date

  • May 2022

Published In

Volume / Issue

  • 100 /

Start / End Page

  • 31 - 39

PubMed ID

  • 35182671

Pubmed Central ID

  • PMC8983575

Electronic International Standard Serial Number (EISSN)

  • 1873-6823

Digital Object Identifier (DOI)

  • 10.1016/j.alcohol.2022.02.002

Language

  • eng

Conference Location

  • United States