Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel

Gas Transport in Interacting Planar Brushes.

Publication ,  Journal Article
Adhikari, S; Nikoubashman, A; Leibler, L; Rubinstein, M; Midya, J; Kumar, SK
Published in: ACS polymers Au
August 2021

Recent experiments on melts of spherical nanoparticles (NPs) densely grafted with polymer chains show enhanced gas transport relative to the neat polymer (without NPs). As a means of understanding this unexpected behavior, we consider here the simpler case of two interacting planar brushes, under conditions representing a polymer melt far below its critical point (i.e., where the "free volume" or holes act akin to a poor solvent). Computer simulations illustrate, in agreement with mean-field ideas, that the density profile far away from the walls is flat but with a value that is marginally larger than the corresponding polymer melt under identical state conditions. We find that tracer particles, which represent the gas of interest, segregate preferentially to the grafting surface, with this result being relatively insensitive to the nature of polymer-surface interactions. These brush layers therefore correspond to heterogeneous transport media: the gas molecules near the grafting surface have accelerated dynamics (presumably parallel to the wall) relative to the corresponding polymer melt, but they have slower dynamics in the central region of the brush. We therefore find that gas molecules perform hop-like motions - they spend a significant part of their time in the regions of fast transport, separated by motions where they "hop" from one surface to the other. These phenomena in combination lead to an overall speedup in gas dynamics in these brush layers relative to a polymer melt, in good agreement with the experimental data.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

ACS polymers Au

DOI

EISSN

2694-2453

ISSN

2694-2453

Publication Date

August 2021

Volume

1

Issue

1

Start / End Page

39 / 46
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Adhikari, S., Nikoubashman, A., Leibler, L., Rubinstein, M., Midya, J., & Kumar, S. K. (2021). Gas Transport in Interacting Planar Brushes. ACS Polymers Au, 1(1), 39–46. https://doi.org/10.1021/acspolymersau.1c00006
Adhikari, Sabin, Arash Nikoubashman, Ludwik Leibler, Michael Rubinstein, Jiarul Midya, and Sanat K. Kumar. “Gas Transport in Interacting Planar Brushes.ACS Polymers Au 1, no. 1 (August 2021): 39–46. https://doi.org/10.1021/acspolymersau.1c00006.
Adhikari S, Nikoubashman A, Leibler L, Rubinstein M, Midya J, Kumar SK. Gas Transport in Interacting Planar Brushes. ACS polymers Au. 2021 Aug;1(1):39–46.
Adhikari, Sabin, et al. “Gas Transport in Interacting Planar Brushes.ACS Polymers Au, vol. 1, no. 1, Aug. 2021, pp. 39–46. Epmc, doi:10.1021/acspolymersau.1c00006.
Adhikari S, Nikoubashman A, Leibler L, Rubinstein M, Midya J, Kumar SK. Gas Transport in Interacting Planar Brushes. ACS polymers Au. 2021 Aug;1(1):39–46.

Published In

ACS polymers Au

DOI

EISSN

2694-2453

ISSN

2694-2453

Publication Date

August 2021

Volume

1

Issue

1

Start / End Page

39 / 46