Skip to main content

Improving the efficiency of open-quantum-system simulations using matrix product states in the interaction picture

Publication ,  Journal Article
Liu, KT; Beratan, DN; Zhang, P
Published in: Physical Review A
March 1, 2022

Modeling open quantum systems-quantum systems coupled to a bath-is of value in condensed-matter theory, cavity quantum electrodynamics, nanosciences, and biophysics. The real-time simulation of open quantum systems was advanced significantly by the recent development of chain mapping techniques and the use of matrix product states that exploit the intrinsic entanglement structure in open quantum systems. The computational cost of simulating open quantum systems, however, remains high when the bath is excited to high-lying quantum states. We develop an approach to reduce the computational costs in such cases. The interaction representation for the open quantum system is used to distribute excitations among the bath degrees of freedom so that the occupation of each bath oscillator is ensured to be low. The interaction picture also causes the matrix dimensions to be much smaller in a matrix product state of a chain-mapped open quantum system than in the Schrödinger picture. Using the interaction representation accelerates the calculations by one to two orders of magnitude over the existing matrix-product-state method. In the regime of strong system-bath coupling and high temperatures, the speedup can be as large as three orders of magnitude. The approach developed here is especially promising to simulate the dynamics of open quantum systems in high-temperature and strong-coupling regimes.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Physical Review A

DOI

EISSN

2469-9934

ISSN

2469-9926

Publication Date

March 1, 2022

Volume

105

Issue

3

Related Subject Headings

  • 51 Physical sciences
  • 49 Mathematical sciences
  • 34 Chemical sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Liu, K. T., Beratan, D. N., & Zhang, P. (2022). Improving the efficiency of open-quantum-system simulations using matrix product states in the interaction picture. Physical Review A, 105(3). https://doi.org/10.1103/PhysRevA.105.032406
Liu, K. T., D. N. Beratan, and P. Zhang. “Improving the efficiency of open-quantum-system simulations using matrix product states in the interaction picture.” Physical Review A 105, no. 3 (March 1, 2022). https://doi.org/10.1103/PhysRevA.105.032406.
Liu, K. T., et al. “Improving the efficiency of open-quantum-system simulations using matrix product states in the interaction picture.” Physical Review A, vol. 105, no. 3, Mar. 2022. Scopus, doi:10.1103/PhysRevA.105.032406.

Published In

Physical Review A

DOI

EISSN

2469-9934

ISSN

2469-9926

Publication Date

March 1, 2022

Volume

105

Issue

3

Related Subject Headings

  • 51 Physical sciences
  • 49 Mathematical sciences
  • 34 Chemical sciences