Human distal lung maps and lineage hierarchies reveal a bipotent progenitor.

Journal Article (Journal Article)

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.

Full Text

Duke Authors

Cited Authors

  • Kadur Lakshminarasimha Murthy, P; Sontake, V; Tata, A; Kobayashi, Y; Macadlo, L; Okuda, K; Conchola, AS; Nakano, S; Gregory, S; Miller, LA; Spence, JR; Engelhardt, JF; Boucher, RC; Rock, JR; Randell, SH; Tata, PR

Published Date

  • April 2022

Published In

Volume / Issue

  • 604 / 7904

Start / End Page

  • 111 - 119

PubMed ID

  • 35355018

Electronic International Standard Serial Number (EISSN)

  • 1476-4687

Digital Object Identifier (DOI)

  • 10.1038/s41586-022-04541-3

Language

  • eng

Conference Location

  • England