Transmission electron microscopy-based analysis of electrically conductive surface defects in large area GaSb homoepitaxial diodes grown using molecular beam epitaxy

Journal Article (Journal Article)

We investigate a mechanism causing shorting of large area GaSb diodes grown on GaSb substrates using molecular beam epitaxy (MBE). The source of these shorts is determined to be large crystallographic defects on the surface of the diodes that are formed around droplets of gallium ejected from the gallium Knudsen cells during MBE. The gallium droplets cause defects in the crystal structure, and, as the epitaxy continues, the gallium is incorporated into the surrounding material. The shape of the defects is pyramidal with a central void extending from the epi-surface to the gallium core. Processing a GaSb diode with these surface defects results in the top-side contact metal migrating into the defect and shorting the diode. This prevents realization of large area diodes that are critical to applications such as photovoltaics and detectors. The diodes in this study are electrically characterized and the defect formation mechanism is investigated using cross-section transmission electron microscopy and electron dispersive spectroscopy. © 2014 TMS.

Full Text

Duke Authors

Cited Authors

  • Romero, OS; Aragon, AA; Rahimi, N; Shima, D; Addamane, S; Rotter, TJ; Mukherjee, SD; Dawson, LR; Lester, LF; Balakrishnan, G

Published Date

  • April 1, 2014

Published In

Volume / Issue

  • 43 / 4

Start / End Page

  • 926 - 930

International Standard Serial Number (ISSN)

  • 0361-5235

Digital Object Identifier (DOI)

  • 10.1007/s11664-014-3070-0

Citation Source

  • Scopus