Therapeutic Effect of Anti-CD52 Monoclonal Antibody in Multiple Sclerosis and Its Animal Models Is Mediated via T Regulatory Cells.

Journal Article (Journal Article)

The objective of this study is to determine the mechanism of action of anti-CD52 mAb treatment in patients with relapsing-remitting multiple sclerosis (RRMS). Experimental autoimmune encephalomyelitis (EAE), an animal model of the disease, was used to address the role of T regulatory cells (Tregs) in the anti-CD52 mAb-induced suppression of the disease. In vitro studies on PBMCs from RRMS patients and matched healthy controls determined the effect of IL-7 on the expansion of CD4+CD25+CD127- Tregs and induction of their suppressive phenotype. This study using EAE animal models of MS has shown that mouse anti-CD52 mAb suppression of clinical disease was augmented by coadministration of IL-7 and partially reversed by anti-IL-7 mAb. In vitro human studies showed that IL-7 induced expansion of CD4+CD25+CD127- Tregs and increased their FOXP3, GITIR, CD46, CTLA-4, granzyme B, and perforin expression. Anti-CD52 mAb treatment of mice with relapsing-remitting EAE induced expansion of Foxp3+CD4+ Tregs and the suppression of IL-17A+CD4+ and IFN-γ+CD4+ cells in peripheral immune organs and CNS infiltrates. The effect was detected immediately after the treatment and maintained over long-term follow-up. Foxp3+CD4+ Treg-mediated suppression of IL-17A+CD4+ and IFN-γ+CD4+ cells in the spinal cord infiltrates was reversed after inducible Foxp3 depletion. Our results demonstrated that the therapeutic effect of U.S. Food and Drug Administration-approved anti-CD52 mAb is dependent on the presence of Tregs.

Full Text

Duke Authors

Cited Authors

  • Kiapour, N; Wu, B; Wang, Y; Seyedsadr, M; Kapoor, S; Zhang, X; Elzoheiry, M; Kasimoglu, E; Wan, Y; Markovic-Plese, S

Published Date

  • July 1, 2022

Published In

Volume / Issue

  • 209 / 1

Start / End Page

  • 49 - 56

PubMed ID

  • 35750335

Pubmed Central ID

  • PMC9458467

Electronic International Standard Serial Number (EISSN)

  • 1550-6606

Digital Object Identifier (DOI)

  • 10.4049/jimmunol.2100176

Language

  • eng

Conference Location

  • United States