Replication of N2-ethyldeoxyguanosine DNA adducts in the human embryonic kidney cell line 293.

Journal Article (Journal Article)

N(2)-Ethyldeoxyguanosine (N(2)-ethyldGuo) is a DNA adduct formed by reaction of the exocyclic amine of dGuo with the ethanol metabolite acetaldehyde. Because ethanol is a human carcinogen, we assessed the biological consequences of replication of template N(2)-ethyldGuo, in comparison to the well-studied adduct O(6)-ethyldeoxyguanosine (O(6)-ethyldGuo). Single chemically synthesized N(2)-ethyldGuo or O(6)-ethyldGuo adducts were placed site specifically in the suppressor tRNA gene of the mutation reporting shuttle plasmid pLSX. N(2)-EthyldGuo and O(6)-ethyldGuo were both minimally mutagenic in double-stranded pLSX replicated in human 293 cells; however, the placement of deoxyuridines on the complementary strand at 5'- and 3'-positions flanking the adduct resulted in 5- and 22-fold enhancements of the N(2)-ethyldGuo- and O(6)-ethyldGuo-induced mutant fractions, respectively. The fold increase in the N(2)-ethyldGuo-induced mutant fraction in deoxyuridine-containing plasmids was similar after replication in 293T cells, a mismatch repair deficient variant of 293 cells, indicating that postreplication mismatch repair has little role in modulating N(2)-ethyldGuo-mediated mutagenesis. The mutation spectrum generated by N(2)-ethyldGuo consisted primarily of single base deletions and adduct site-targeted transversions, in contrast to the exclusive production of adduct site-targeted transitions by O(6)-ethyldGuo. The yield of progeny plasmids after replication in 293 cells was reduced by the presence of N(2)-ethyldGuo in parental plasmids with or without deoxyuridine to 39 or 19%, respectively. Taken together, these data indicate that N(2)-ethyldGuo in DNA exerts its principal biological activity by blocking translesion DNA synthesis in human cells, resulting in either failure of replication or frameshift deletion mutations.

Full Text

Duke Authors

Cited Authors

  • Upton, DC; Wang, X; Blans, P; Perrino, FW; Fishbein, JC; Akman, SA

Published Date

  • July 2006

Published In

Volume / Issue

  • 19 / 7

Start / End Page

  • 960 - 967

PubMed ID

  • 16841965

International Standard Serial Number (ISSN)

  • 0893-228X

Digital Object Identifier (DOI)

  • 10.1021/tx060084a

Language

  • eng

Conference Location

  • United States