Radiobiological basis of SBRT and SRS.

Journal Article (Journal Article;Review)

Stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) have been demonstrated to be highly effective for a variety of tumors. However, the radiobiological principles of SBRT and SRS have not yet been clearly defined. It is well known that newly formed tumor blood vessels are fragile and extremely sensitive to ionizing radiation. Various lines of evidence indicate that irradiation of tumors with high dose per fraction, i.e. >10 Gy per fraction, not only kills tumor cells but also causes significant damage in tumor vasculatures. Such vascular damage and ensuing deterioration of the intratumor environment then cause ischemic or indirect/secondary tumor cell death within a few days after radiation exposure, indicating that vascular damage plays an important role in the response of tumors to SBRT and SRS. Indications are that the extensive tumor cell death due to the direct effect of radiation on tumor cells and the secondary effect through vascular damage may lead to massive release of tumor-associated antigens and various pro-inflammatory cytokines, thereby triggering an anti-tumor immune response. However, the precise role of immune assault on tumor cells in SBRT and SRS has not yet been clearly defined. The "4 Rs" for conventional fractionated radiotherapy do not include indirect cell death and thus 4 Rs cannot account for the effective tumor control by SBRT and SRS. The linear-quadratic model is for cell death caused by DNA breaks and thus the usefulness of this model for ablative high-dose SBRT and SRS is limited.

Full Text

Duke Authors

Cited Authors

  • Song, CW; Kim, M-S; Cho, LC; Dusenbery, K; Sperduto, PW

Published Date

  • August 2014

Published In

Volume / Issue

  • 19 / 4

Start / End Page

  • 570 - 578

PubMed ID

  • 24993673

Electronic International Standard Serial Number (EISSN)

  • 1437-7772

Digital Object Identifier (DOI)

  • 10.1007/s10147-014-0717-z


  • eng

Conference Location

  • Japan