Neural Network Approximation of Refinable Functions

Journal Article (Journal Article)

In the desire to quantify the success of neural networks in deep learning and other applications, there is a great interest in understanding which functions are efficiently approximated by the outputs of neural networks. By now, there exists a variety of results which show that a wide range of functions can be approximated with sometimes surprising accuracy by these outputs. For example, it is known that the set of functions that can be approximated with exponential accuracy (in terms of the number of parameters used) includes, on one hand, very smooth functions such as polynomials and analytic functions and, on the other hand, very rough functions such as the Weierstrass function, which is nowhere differentiable. In this paper, we add to the latter class of rough functions by showing that it also includes refinable functions. Namely, we show that refinable functions are approximated by the outputs of deep ReLU neural networks with a fixed width and increasing depth with accuracy exponential in terms of their number of parameters. Our results apply to functions used in the standard construction of wavelets as well as to functions constructed via subdivision algorithms in Computer Aided Geometric Design.

Full Text

Duke Authors

Cited Authors

  • Daubechies, I; DeVore, R; Dym, N; Faigenbaum-Golovin, S; Kovalsky, SZ; Lin, KC; Park, J; Petrova, G; Sober, B

Published Date

  • January 1, 2022

Published In

Electronic International Standard Serial Number (EISSN)

  • 1557-9654

International Standard Serial Number (ISSN)

  • 0018-9448

Digital Object Identifier (DOI)

  • 10.1109/TIT.2022.3199601

Citation Source

  • Scopus