Does radiation therapy need more than two photon energies from Linac?

Journal Article (Journal Article)

PURPOSE: Modern Linacs are equipped with multiple photon energies for radiation therapy, and proper energy is chosen for each case based on tumor characteristics and patient anatomy. The aim of this study is to investigate whether it is necessary to have more than two photons energies. METHODS: The principle of photon energy synthesis is presented. It is shown that a photon beam of any intermediate energy (Esyn) can be synthesized from a linear combination of a low energy (Elow) and a high energy (Ehigh). The principle is validated on a wide range of scenarios: different intermediate photon energies on the same Linac; between Linacs from the same manufacturer or different manufacturers; open and wedge beams; and extensive photon energies available from published reference data. In addition, 3D dose distributions in water phantom are compared using Gamma analysis. The method is further demonstrated in clinical cases of various tumor sites and multiple treatment modalities. Experimental measurements are performed for IMRT plans and they are analyzed using the standard clinical protocol. RESULTS: The synthesis coefficients vary with energy and field size. The root mean square error (RMSE) is within 1.1% for open and wedge fields. Excellent agreement was observed for British Journal of Radiology (BJR) data with an average RMSE of 0.11%. The 3D Gamma analysis shows a good match for all field sizes in the water phantom and all treatment modalities for the five clinical cases. The minimum gamma passing rate of 95.7% was achieved at 1%/1mm criteria for two measured dose distributions of IMRT plans. CONCLUSION: A Linac with two photon energies is capable of producing dosimetrically equivalent plans of any energy in-between through the photon energy synthesis, supporting the notion that there is no need to equip more than two photon energies on each Linac. This can significantly reduce the cost of equipment for radiation therapy.

Full Text

Duke Authors

Cited Authors

  • Zhang, X; Zhou, F; Liu, B; Xiong, T; Bai, X; Wu, Q

Published Date

  • 2022

Published In

Volume / Issue

  • 12 /

Start / End Page

  • 1009553 -

PubMed ID

  • 36408155

Pubmed Central ID

  • PMC9669309

International Standard Serial Number (ISSN)

  • 2234-943X

Digital Object Identifier (DOI)

  • 10.3389/fonc.2022.1009553

Language

  • eng

Conference Location

  • Switzerland