Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles.
Journal Article (Journal Article)
Nitric oxide (NO), a reactive free radical, has proven effective in eradicating bacterial biofilms with reduced risk of fostering antibacterial resistance. Herein, we evaluated the efficacy of NO-releasing silica nanoparticles against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus biofilms as a function of particle size and shape. Three sizes of NO-releasing silica nanoparticles (i.e., 14, 50, and 150 nm) with identical total NO release (∼0.3 μmol/mg) were utilized to study antibiofilm eradication as a function of size. To observe the role of particle shape on biofilm killing, we varied the aspect ratio of the NO-releasing silica particles from 1 to 8 while maintaining constant particle volume (∼0.02 μm(3)) and NO-release totals (∼0.7 μmol/mg). Nitric oxide-releasing particles with decreased size and increased aspect ratio were more effective against both P. aeruginosa and S. aureus biofilms, with the Gram-negative species exhibiting the greatest susceptibility to NO. To further understand the influence of these nanoparticle properties on NO-mediated antibacterial activity, we visualized intracellular NO concentrations and cell death with confocal microscopy. Smaller NO-releasing particles (14 nm) exhibited better NO delivery and enhanced bacteria killing compared to the larger (50 and 150 nm) particles. Likewise, the rod-like NO-releasing particles proved more effective than spherical particles in delivering NO and inducing greater antibacterial action throughout the biofilm.
Full Text
Duke Authors
Cited Authors
- Slomberg, DL; Lu, Y; Broadnax, AD; Hunter, RA; Carpenter, AW; Schoenfisch, MH
Published Date
- October 2013
Published In
Volume / Issue
- 5 / 19
Start / End Page
- 9322 - 9329
PubMed ID
- 24006838
Electronic International Standard Serial Number (EISSN)
- 1944-8252
International Standard Serial Number (ISSN)
- 1944-8244
Digital Object Identifier (DOI)
- 10.1021/am402618w
Language
- eng