Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine.

Published

Journal Article (Review)

Two of the most common phospholipids in biological membranes are phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Over a wide range of temperatures the PCs found in biological membranes form lamellar (bilayer) phases when dispersed in excess water, whereas PEs form either lamellar or hexagonal phases depending on their hydrocarbon chain composition. This paper details the hydration properties of lamellar and hexagonal phases formed by PCs and PEs, focusing on the energetics of hydration of these phases. For the hexagonal phase, the energy of bending the lipid monolayer is a critical term, with other contributions arising from the energies of hydrating the lipid headgroups and filling voids in the interstices in the hydrocarbon region. For the lamellar phase of PC, the water content is determined by a balance between the attractive van der Waals pressure and repulsive hydration and entropic (steric) pressures. In the case of PE bilayers, recent experiments demonstrate the presence of an additional strong, short-range attractive interaction, possibly due to hydrogen-bonded water interactions between N+ H3 groups in one bilayer and the PO4- groups in the apposing bilayer. This additional attractive pressure causes apposing PE bilayers to adhere strongly and to imbibe considerably less water than PC bilayers.

Full Text

Duke Authors

Cited Authors

  • McIntosh, TJ

Published Date

  • July 15, 1996

Published In

Volume / Issue

  • 81 / 2

Start / End Page

  • 117 - 131

PubMed ID

  • 8810046

Pubmed Central ID

  • 8810046

International Standard Serial Number (ISSN)

  • 0009-3084

Language

  • eng

Conference Location

  • Ireland