Neutron and X-ray diffraction structural analysis of phosphatidylinositol bilayers.

Published

Journal Article

Phosphatidylinositol (PI) bilayers, squeezed together by applied osmotic pressures, were studied by both neutron diffraction and X-ray diffraction. The lamellar repeat period for PI bilayers decreased from 9.5 nm at an applied pressure of 1.1.10(6) dyn/cm2 (1.1 atm) to 5.4 nm at an applied pressure of 1.6.10(7) dyn/cm2 (16 atm). Further increases in applied pressure, up to 2.7.10(9) dyn/cm2 (2700 atm) reduced the repeat period by only about 0.3 nm, to 5.1 nm. Thus, a plot of applied pressure versus repeat period shows a sharp upward break for repeat periods less than about 5.4 nm. For repeat periods of less than 5.4 nm, analysis of neutron-scattering density profiles and electron-density profiles indicates that the structure of the PI bilayers changes as the bilayers are dehydrated, even though there are only small changes in the repeat period. These structural changes are most likely due to removal of water from the headgroup regions of the bilayer. D2O/H2O exchange experiments show that, at an applied pressure of 2.8.10(7) dyn/cm2, water is located between adjacent PI headgroups in the plane of the bilayer. We conclude that, although electrostatics provide the dominant long-range repulsive interaction, hydration repulsion and steric hindrance between PI headgroups from apposing bilayers provide the major barriers for the close approach of adjacent PI bilayers for repeat periods less than 5.4 nm. This structural analysis also indicates that the phosphoinositol group extends from the plane of the bilayer into the fluid space between adjacent bilayers. This extended orientation for the headgroup is consistent with electrophoretic measurements on PI vesicles.

Full Text

Duke Authors

Cited Authors

  • McDaniel, RV; McIntosh, TJ

Published Date

  • August 7, 1989

Published In

Volume / Issue

  • 983 / 2

Start / End Page

  • 241 - 246

PubMed ID

  • 2758060

Pubmed Central ID

  • 2758060

International Standard Serial Number (ISSN)

  • 0006-3002

Digital Object Identifier (DOI)

  • 10.1016/0005-2736(89)90239-3

Language

  • eng

Conference Location

  • Netherlands