440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons.

Journal Article (Journal Article)

440-kD ankyrinB is an alternatively spliced variant of 220-kD ankyrinB, with a predicted 220-kD sequence inserted between the membrane/spectrin binding domains and COOH-terminal domain (Kunimoto, M., E. Otto, and V. Bennett. 1991. J. Cell Biol. 236:1372-1379). This paper presents the sequence of 2085 amino acids comprising the alternatively spliced portion of 440-kD ankyrinB, and provides evidence that much of the inserted sequence has the configuration of an extended random coil. Notable features of the inserted sequence include a hydrophilicity profile that contains few hydrophobic regions, and 220 predicted sites for phosphorylation by protein kinases (casein kinase 2, protein kinase C, and proline-directed protein kinase). Secondary structure and folding of the inserted amino acid residues were deduced from properties of recombinant polypeptides. Frictional ratios of 1.9-2.4 were calculated from Stokes radii and sedimentation coefficients, for polypeptides comprising 70% of the inserted sequence, indicating a highly asymmetric shape. Circular dichroism spectra of these polypeptides indicate a nonglobular structure with negligible alpha-helix or beta sheet folding. These results suggest a ball-and-chain model for 440-kD ankyrinB with a membrane-associated globular head domain and an extended filamentous tail domain encoded by the inserted sequence. Immunofluorescence and immunoblot studies of developing neonatal rat optic nerve indicate that 440-kD ankyrinB is selectively targeted to premyelinated axons, and that 440-kD ankyrinB disappears from these axons coincident with myelination. Hypomyelinated nerve tracts of the myelin-deficient Shiverer mice exhibit elevated levels of 440-kD ankyrinB. 440-kD ankyrinB thus is a specific component of unmyelinated axons and expression of 440-kD ankyrinB may be downregulated as a consequence of myelination.

Full Text

Duke Authors

Cited Authors

  • Chan, W; Kordeli, E; Bennett, V

Published Date

  • December 1993

Published In

Volume / Issue

  • 123 / 6 Pt 1

Start / End Page

  • 1463 - 1473

PubMed ID

  • 8253844

Pubmed Central ID

  • PMC2290908

International Standard Serial Number (ISSN)

  • 0021-9525

Digital Object Identifier (DOI)

  • 10.1083/jcb.123.6.1463


  • eng

Conference Location

  • United States