Skip to main content
Journal cover image

A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates.

Publication ,  Journal Article
Archibald, SJ; Krarup, C; Shefner, J; Li, ST; Madison, RD
Published in: J Comp Neurol
April 22, 1991

When a peripheral nerve is severed and left untreated, the most likely result is the formation of an endbulb neuroma; this tangled mass of disorganized nerve fibers blocks functional recovery following nerve injury. Although there are several different approaches for promoting nerve repair, which have been greatly refined over recent years, the clinical results of peripheral nerve repair remain very disappointing. In this paper we compare the results of a collagen nerve guide conduit to the more standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves in rats and nonhuman primates. In rats, we tested recovery from sciatic nerve transection and repair by 1) direct microsurgical suture, 2) 4 mm autograft, or 3) entubulation repair with collagen-based nerve guide conduits. Evoked muscle action potentials (MAP) were recorded from the gastrocnemius muscle at 4 and 12 weeks following sciatic nerve transection. At 4 weeks the repair group of direct suture demonstrated a significantly greater MAP, compared to the other surgical repair groups. However, at 12 weeks all four surgical repair groups displayed similar levels of recovery of the motor response. In six adult male Macaca fascicularis monkeys the median nerve was transected 2 cm above the wrist and repaired by either a 4 mm nerve autograft or a collagen-based nerve guide conduit leaving a 4 mm gap between nerve ends. Serial studies of motor and sensory fibers were performed by recording the evoked MAP from the abductor pollicis brevis muscle (APB) and the sensory action potential (SAP) evoked by stimulation of digital nerves (digit II), respectively, up to 760 days following surgery. Evoked muscle responses returned to normal baseline levels in all cases. Statistical analysis of the motor responses, as judged by the slope of the recovery curves, indicated a significantly more rapid rate of recovery for the nerve guide repair group. The final level of recovery of the MAP amplitudes was not significantly different between the groups. In contrast, the SAP amplitude only recovered to the low normal range and there were no statistically significant differences between the two groups in terms of sensory recovery rates. The rodent and primate studies suggest that in terms of recovery of physiological responses from target muscle and sensory nerves, entubulation repair of peripheral nerves with a collagen-based nerve guide conduit over a short nerve gap (4 mm) is as effective as a standard nerve autograft.(ABSTRACT TRUNCATED AT 400 WORDS)

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Comp Neurol

DOI

ISSN

0021-9967

Publication Date

April 22, 1991

Volume

306

Issue

4

Start / End Page

685 / 696

Location

United States

Related Subject Headings

  • Sciatic Nerve
  • Rodentia
  • Rats
  • Primates
  • Peripheral Nerves
  • Neurology & Neurosurgery
  • Nerve Regeneration
  • Male
  • Macaca fascicularis
  • Evoked Potentials
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Archibald, S. J., Krarup, C., Shefner, J., Li, S. T., & Madison, R. D. (1991). A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol, 306(4), 685–696. https://doi.org/10.1002/cne.903060410
Archibald, S. J., C. Krarup, J. Shefner, S. T. Li, and R. D. Madison. “A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates.J Comp Neurol 306, no. 4 (April 22, 1991): 685–96. https://doi.org/10.1002/cne.903060410.
Archibald, S. J., et al. “A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates.J Comp Neurol, vol. 306, no. 4, Apr. 1991, pp. 685–96. Pubmed, doi:10.1002/cne.903060410.
Journal cover image

Published In

J Comp Neurol

DOI

ISSN

0021-9967

Publication Date

April 22, 1991

Volume

306

Issue

4

Start / End Page

685 / 696

Location

United States

Related Subject Headings

  • Sciatic Nerve
  • Rodentia
  • Rats
  • Primates
  • Peripheral Nerves
  • Neurology & Neurosurgery
  • Nerve Regeneration
  • Male
  • Macaca fascicularis
  • Evoked Potentials