Decreased ethanol preference and consumption in dopamine transporter female knock-out mice.


Journal Article

BACKGROUND: It is commonly believed that the mesolimbic dopamine (DA) system participates in the etiology of alcoholism. One of the most important regulators of DA synaptic transmission is the DA transporter (DAT). We examined the effects of the genetic reduction or deletion of DAT on voluntary ethanol consumption and ethanol-induced sedation. METHODS: Ethanol preference and consumption were assessed in the two-bottle choice paradigm, and the depressant effects of ethanol were evaluated by measuring sleep time after acute injection of ethanol. RESULTS: The latent period to lose the righting reflex was shorter in both knock-out mice (DAT-KO) and heterozygote mice (HET) than in wild-type (WT) mice. No significant difference was found among the three genotypes in the ethanol blood concentration at the onset of regaining the righting reflex. Females of all genotypes consumed more fluid than males of the same genotype. HET and DAT-KO females had increased total fluid consumption compared with WT females. DAT-KO males had increased fluid consumption compared with WT and HET males. Ethanol preference and consumption were not different among male mice of different genotypes. WT and HET females demonstrated significantly higher ethanol consumption than males. HET female mice did not differ from WT mice in ethanol preference. There was no difference between HET and WT mice in the preference for saccharin or quinine solutions. DAT-KO females avoided ethanol, and their consumption and preference were lower than in WT and HET females, despite markedly increased total intake. DAT-KO mice also demonstrated altered taste preference for saccharin and quinine. CONCLUSIONS: Partial deletion of DAT results in increased fluid consumption in female mice but does not change ethanol preference in either sex. Complete deletion of DAT reduces ethanol preference in female mice; this may be due to a combination of the pharmacological actions of DAT deletion and alterations in fluid consumption and taste discrimination.

Full Text

Duke Authors

Cited Authors

  • Savelieva, KV; Caudle, WM; Findlay, GS; Caron, MG; Miller, GW

Published Date

  • June 2002

Published In

Volume / Issue

  • 26 / 6

Start / End Page

  • 758 - 764

PubMed ID

  • 12068242

Pubmed Central ID

  • 12068242

International Standard Serial Number (ISSN)

  • 0145-6008


  • eng

Conference Location

  • England