Mammalian beta-adrenergic receptors. Distinct glycoprotein populations containing high mannose or complex type carbohydrate chains.

Published

Journal Article

Mammalian beta-adrenergic receptor binding peptides can be visualized by covalently labeling them with the photoaffinity reagent p-azido-m-[125I]iodobenzylcarazolol followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The receptor peptides migrate as broad bands of Mr approximately equal to 62,000. In the present study, we examined the carbohydrate composition of the mammalian beta receptor through the use of specific exo- and endoglycosidases and lectin affinity chromatography. Treatment of p-azido-m-[125I]iodobenzylcarazolol-labeled beta2-adrenergic receptors from hamster lung or rat erythrocyte with the exoglycosidases neuraminidase and alpha-mannosidase provided evidence for the existence of both high mannose and complex type carbohydrate chains on beta 2-adrenergic receptors. The nonadditivity of the effect of sequential treatments with these enzymes suggested discrete populations of beta-adrenergic receptors containing either complex or high mannose type chains. Deglycosylation of receptor with endoglycosidase F results in a single labeled polypeptide at Mr = 49,000 for both systems. The same two populations of the beta receptors (high mannose or complex type chain) could also be fractionated by lectin affinity chromatography of solubilized p-azido-m-[125I]iodobenzylcarazolol-labeled receptors. The high mannose-containing receptors could be absorbed to and specifically eluted from concanavalin A-agarose. Those containing complex type carbohydrates could be adsorbed to and eluted from wheat germ agglutinin-agarose. Taken together, these data suggest that mammalian beta-adrenergic receptors contain both complex and high mannose type carbohydrate chains and that microheterogeneity of these chains likely explains the broad band pattern typically obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Full Text

Duke Authors

Cited Authors

  • Stiles, GL; Benovic, JL; Caron, MG; Lefkowitz, RJ

Published Date

  • July 1, 1984

Published In

Volume / Issue

  • 259 / 13

Start / End Page

  • 8655 - 8663

PubMed ID

  • 6330118

Pubmed Central ID

  • 6330118

Electronic International Standard Serial Number (EISSN)

  • 1083-351X

International Standard Serial Number (ISSN)

  • 0021-9258

Language

  • eng