Binding of [125I]-N-(p-aminophenethyl)spiroperidol to the D-2 dopamine receptor in the neurointermediate lobe of the rat pituitary gland: a thermodynamic study.

Journal Article (Journal Article)

The novel iodinated ligand [125I]-N-(p-aminophenethyl)spiroperidol ([125I]NAPS) was used to identify the D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland. The binding of [125I]NAPS was of high affinity and saturable, given that the dissociation constant and the maximal binding were 34.7 +/- 4.8 pM and 21.1 +/- 2.5 fmol/mg of protein, respectively. The ability of dopaminergic agonists and antagonists to compete with [125I]NAPS varied markedly with incubation temperature. The marked decrease of the molar potency associated with increasing incubation temperature in the competitive displacement curve suggested that the binding of five agonists, dopamine, (-)-apomorphine, (-)-n-propylnorapomorphine, N-0434, and LY-171555, to the D-2 dopamine receptor was enthalpy-driven, with a negative change in entropy. In contrast, the binding of three antagonists, fluphenazine, (+)-butaclamol, and domperidone, was entropy-driven, with positive change in entropy, suggesting less temperature-sensitive change in the molar potency. Several molecules gave unanticipated results; the molar potency of two dopamine agonists, bromocriptine and lisuride, was much less temperature-sensitive than the other agonists used in this study. The thermodynamic parameters for the atypical agonists indicated entropy-driven binding. Conversely, the molar potency of (+)-apomorphine, a dopamine receptor antagonist, was markedly affected by incubation temperature, indicating enthalpy-driven binding. Another antagonist, YM-09151-2, was affected by the inclusion of sodium chloride in the assay system: in the absence of sodium chloride, the drug was relatively weak and displayed enthalpy-driven binding; in the presence of sodium chloride, its molar potency was increased and its binding manner turned into entropy-driven.

Full Text

Duke Authors

Cited Authors

  • Agui, T; Amlaiky, N; Caron, MG; Kebabian, JW

Published Date

  • February 1, 1988

Published In

Volume / Issue

  • 33 / 2

Start / End Page

  • 163 - 169

PubMed ID

  • 2963208

International Standard Serial Number (ISSN)

  • 0026-895X


  • eng

Conference Location

  • United States