Expression of three forms of melanoma growth stimulating activity (MGSA)/gro in human retinal pigment epithelial cells.

Published

Journal Article

PURPOSE: To characterize mRNA expression and protein production of the cytokine MGSA/gro in human retinal pigment epithelial (RPE) cells and to determine whether expression of MGSA/gro is modulated by serum and the cytokines interleukin 1 beta (IL-1 beta), tumor necrosis factor alpha (TNF alpha), or transforming growth factor beta (TGF beta) mediators implicated in proliferative vitreoretinopathy (PVR). METHODS: Reverse-transcription polymerase chain reaction was used to determine the steady-state mRNA expression of three forms of MGSA/gro, alpha, beta, and gamma, by cultured human RPE cells in the presence or absence of recombinant IL-1 beta, TNF alpha, or TGF beta, or when serum-starved cells were re-fed with medium containing serum. Immunocytochemistry was used to characterize RPE cell-associated MGSA/gro protein, and immunoprecipitation of MGSA/gro from cell-conditioned medium was used to demonstrate MGSA/gro secretion. RESULTS: MGSA/gro mRNA was expressed minimally under basal conditions. Expression for all three forms of MGSA/gro mRNA was induced in a dose- and time-dependent manner after exposure to IL-1 beta, to a lesser extent after exposure to TNF alpha, but not after exposure to TGF beta. Serum induced MGSA/gro alpha and gamma transcripts, but not beta transcripts. Cell-associated MGSA/gro was identified on RPE cells grown in the absence of cytokines, but MGSA/gro was not secreted under these conditions. Exposure to IL-1 beta did not consistently cause increased cell-associated MGSA/gro; however, IL-1 beta induced secretion of MGSA/gro in a time-dependent manner. CONCLUSION: MGSA/gro is produced by human RPE in response to mediators implicated in PVR. Because MGSA/gro is a pleiotropic modulator of cell proliferation and inflammation, it may contribute to the intraocular wound healing response that characterizes PVR.

Full Text

Duke Authors

Cited Authors

  • Jaffe, GJ; Richmond, A; Van Le, L; Shattuck, RL; Cheng, QC; Wong, F; Roberts, W

Published Date

  • August 1993

Published In

Volume / Issue

  • 34 / 9

Start / End Page

  • 2776 - 2785

PubMed ID

  • 8344798

Pubmed Central ID

  • 8344798

Electronic International Standard Serial Number (EISSN)

  • 1552-5783

International Standard Serial Number (ISSN)

  • 0146-0404

Language

  • eng