Skip to main content
Journal cover image

Converting a maltose receptor into a nascent binuclear copper oxygenase by computational design.

Publication ,  Journal Article
Benson, DE; Haddy, AE; Hellinga, HW
Published in: Biochemistry
March 5, 2002

Computational protein design methods were used to identify mutations that are predicted to introduce a binuclear copper center coordinated by six histidines, replacing the maltose-binding site in Escherichia coli maltose-binding protein (MBP) with an oxygen-binding site. A small family of five candidate designs consisting of 9 to 10 mutations each was constructed by oligonucleotide-directed mutagenesis. These mutant proteins were expressed and purified, and their stability, copper- and cobalt-binding properties, and interactions of the resulting metalloprotein complexes with azide, hydrogen peroxide, and dioxygen were characterized. We identified one 10-fold mutant, MBP.Hc.E, that can form Cu(II)(2) and Co(II)(2) complexes that interact with H(2)O(2) and O(2). The Co(II)(2) protein reacts with H(2)O(2) to form a complex that is spectroscopically similar to a synthetic model that structurally mimics the oxy-hemocyanin core, whereas the Cu(II)(2) protein reacted with O(2) or H(2)O(2) does not. We postulate that the equilibrium between the open and closed conformations of MBP allows species with variable Cu-Cu distances to form, and that such species can bind ligands in geometries that are not observed in natural type III centers. Introduction of one additional mutation in the hinge region of MBP, I329F, known to favor formation of the closed state, results in a binuclear copper center that when reacted with low concentrations of H(2)O(2) mimics the spectroscopic signature of oxy-hemocyanin.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biochemistry

DOI

ISSN

0006-2960

Publication Date

March 5, 2002

Volume

41

Issue

9

Start / End Page

3262 / 3269

Location

United States

Related Subject Headings

  • Protein Engineering
  • Protein Conformation
  • Oxygenases
  • Oxidation-Reduction
  • Mutagenesis
  • Monosaccharide Transport Proteins
  • Models, Molecular
  • Maltose-Binding Proteins
  • Maltose
  • Hydrogen Peroxide
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Benson, D. E., Haddy, A. E., & Hellinga, H. W. (2002). Converting a maltose receptor into a nascent binuclear copper oxygenase by computational design. Biochemistry, 41(9), 3262–3269. https://doi.org/10.1021/bi011359i
Benson, David E., Alice E. Haddy, and Homme W. Hellinga. “Converting a maltose receptor into a nascent binuclear copper oxygenase by computational design.Biochemistry 41, no. 9 (March 5, 2002): 3262–69. https://doi.org/10.1021/bi011359i.
Benson DE, Haddy AE, Hellinga HW. Converting a maltose receptor into a nascent binuclear copper oxygenase by computational design. Biochemistry. 2002 Mar 5;41(9):3262–9.
Benson, David E., et al. “Converting a maltose receptor into a nascent binuclear copper oxygenase by computational design.Biochemistry, vol. 41, no. 9, Mar. 2002, pp. 3262–69. Pubmed, doi:10.1021/bi011359i.
Benson DE, Haddy AE, Hellinga HW. Converting a maltose receptor into a nascent binuclear copper oxygenase by computational design. Biochemistry. 2002 Mar 5;41(9):3262–3269.
Journal cover image

Published In

Biochemistry

DOI

ISSN

0006-2960

Publication Date

March 5, 2002

Volume

41

Issue

9

Start / End Page

3262 / 3269

Location

United States

Related Subject Headings

  • Protein Engineering
  • Protein Conformation
  • Oxygenases
  • Oxidation-Reduction
  • Mutagenesis
  • Monosaccharide Transport Proteins
  • Models, Molecular
  • Maltose-Binding Proteins
  • Maltose
  • Hydrogen Peroxide