Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells.

Published

Journal Article

Peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several components of energy metabolism, particularly certain aspects of adaptive thermogenesis in brown fat and skeletal muscle, hepatic gluconeogenesis, and fiber type switching in skeletal muscle. PGC-1alpha has been shown to induce mitochondrial biogenesis when expressed in muscle cells, and preliminary analysis has suggested that this molecule may specifically increase the fraction of uncoupled versus coupled respiration. In this paper, we have performed detailed bioenergetic analyses of the function of PGC-1alpha and its homolog PGC-1beta in muscle cells by monitoring simultaneously oxygen consumption and membrane potential. Cells expressing PGC-1alpha or PGC-1beta display higher proton leak rates at any given membrane potential than control cells. However, cells expressing PGC-1alpha have a higher proportion of their mitochondrial respiration linked to proton leak than cells expressing PGC-1beta. Although these two proteins cause a similar increase in the expression of many mitochondrial genes, PGC-1beta preferentially induces certain genes involved in the removal of reactive oxygen species, recently recognized as activators of uncoupling proteins. Together, these data indicate that PGC-1alpha and PGC-1beta profoundly alter mitochondrial metabolism and suggest that these proteins are likely to play different physiological functions.

Full Text

Duke Authors

Cited Authors

  • St-Pierre, J; Lin, J; Krauss, S; Tarr, PT; Yang, R; Newgard, CB; Spiegelman, BM

Published Date

  • July 18, 2003

Published In

Volume / Issue

  • 278 / 29

Start / End Page

  • 26597 - 26603

PubMed ID

  • 12734177

Pubmed Central ID

  • 12734177

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.M301850200

Language

  • eng

Conference Location

  • United States