Thalamic bursting in rats during different awake behavioral states.


Journal Article

Thalamic neurons have two firing modes: tonic and bursting. It was originally suggested that bursting occurs only during states such as slow-wave sleep, when little or no information is relayed by the thalamus. However, bursting occurs during wakefulness in the visual and somatosensory thalamus, and could theoretically influence sensory processing. Here we used chronically implanted electrodes to record from the ventroposterior medial thalamic nucleus (VPM) and primary somatosensory cortex (SI) of awake, freely moving rats during different behaviors. These behaviors included quiet immobility, exploratory whisking (large-amplitude whisker movements), and whisker twitching (small-amplitude, 7- to 12-Hz whisker movements). We demonstrated that thalamic bursting appeared during the oscillatory activity occurring before whisker twitching movements, and continued throughout the whisker twitching. Further, thalamic bursting occurred during whisker twitching substantially more often than during the other behaviors, and a neuron was most likely to respond to a stimulus if a burst occurred approximately 120 ms before the stimulation. In addition, the amount of cortical area activated was similar to that during whisking. However, when SI was inactivated by muscimol infusion, whisker twitching was never observed. Finally, we used a statistical technique called partial directed coherence to identify the direction of influence of neural activity between VPM and SI, and observed that there was more directional coherence from SI to VPM during whisker twitching than during the other behaviors. Based on these findings, we propose that during whisker twitching, a descending signal from SI triggers thalamic bursting that primes the thalamocortical loop for enhanced signal detection during the whisker twitching behavior.

Full Text

Duke Authors

Cited Authors

  • Fanselow, EE; Sameshima, K; Baccala, LA; Nicolelis, MA

Published Date

  • December 18, 2001

Published In

Volume / Issue

  • 98 / 26

Start / End Page

  • 15330 - 15335

PubMed ID

  • 11752471

Pubmed Central ID

  • 11752471

International Standard Serial Number (ISSN)

  • 0027-8424

Digital Object Identifier (DOI)

  • 10.1073/pnas.261273898


  • eng

Conference Location

  • United States