Nuclear localization of NPR1 is required for activation of PR gene expression.

Published

Journal Article

Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1-green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.

Full Text

Duke Authors

Cited Authors

  • Kinkema, M; Fan, W; Dong, X

Published Date

  • December 2000

Published In

Volume / Issue

  • 12 / 12

Start / End Page

  • 2339 - 2350

PubMed ID

  • 11148282

Pubmed Central ID

  • 11148282

Electronic International Standard Serial Number (EISSN)

  • 1532-298X

International Standard Serial Number (ISSN)

  • 1040-4651

Digital Object Identifier (DOI)

  • 10.2307/3871233

Language

  • eng